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FOREWORD

This report was prepared by the Optical Science Laboratory of

the Advanced Concepts Division of the Environmental Research

Institute of Michigan. The work was sponsored by the Air Force

Office of Scientific Research/AFSC, United States Air Force, under

Contract No. F49620-82-K-0018.

This final scientific report covers work performed between

I March 1982 and 31 October 1985. The contract monitor is Dr. Henry

Radoski, Directorate of Physical and Geophysical Sciences, AFOSR/NP,

Building 410, Bolling Air Force Base, D.C. 20332. The principal

investigator is James R. Fienup. Major contributors to the effort

are James R. Fienup and Christopher C. Wackerman. Additional con-

tributors to the effort are Thomas R. Crimmins, John D. Gorman,

Susan C. Elm, William Licata and Raja Roumaya.

:* t or

i t '

iii



wRIM

CONTE NTS

FOREWORD ... ............... . ............. iii
LIST OF FIGURES..... .. . . . .......... . . . . vi

SUMMARY .. ........................... .vii
1. INTRODUCTION AND OBJECTIVES ..... ................ . . 1

2. RESEARCH ACCOMPLISHMENTS ........ ................ 3
2.1 New Recursive Algorithm 4
2.2 Improvements in the Iterative Algorithm 5
2.3 Uniqueness Demonstration 6
2.4 Reconstruction of Complex-Valued Objects 7
2.5 Reconstruction Using Boundary Values 7
2.6 Estimating Fourier Modulus from Speckle Images 8
2.7 Relaxation Algorithm 8
2.8 Uniqueness with Separated Support 9
2.9 Alternative Iterative Algorithms 9
2.10 Shift-And-Add 10
2.11 Analysis of Astronomical Data 11

APPENDIX A: PHASE RETRIEVAL AND IMAGE RECONSTRUCTION
IN ASTRONOMY ...... ................... ... 15

APPENDIX B: RECONSTRUCTION OF OBJECTS HAVING LATENT
REFERENCE POINTS ..... ................. .. 85

APPENDIX C: PHASE RETRIEVAL STAGNATION PROBLEMS
AND SOLUTIONS ...... . ................... 93

APPENDIX D: UNIQUENESS OF 2-D PHASE RETRIEVAL SHOWN
EMPIRICALLY ... .................... 139

APPENDIX E: RECONSTRUCTION OF A COMPLEX-VALUED OBJECT
FROM THE MODULUS OF ITS FOURIER TRANSFORM USING
A SUPPORT CONSTRAINT ...... ............... 163

APPENDIX F: PHASE RETRIEVAL USING BOUNDARY CONDITIONS ....... 189

APPENDIX G: AN ESTIMATOR OF FOURIER INTENSITIES IN STELLAR
SPECKLE INTERFEROMETRY .... .............. .195

REFERENCES ...... ... ........................... .219

v



LIST OF FIGURES

Figure 1. Flat Fielding Experiment with Binary Star Data. (a) Flat
field; (b)long-exposure binary star raw image; (c) binary
star image after flat field correction ..................... 13

Figure 2. Flat Fielding Experiment with Reference Star Data.
(a) Flat field; (b) long-exposure reference star raw
image; (c) reference star image after flat field
correction ................................................. 14

vi



A 1

"RMSUMMARY

This report describes the results of a three-year research pro-

gram to investigate methods for obtaining diffraction-limited images

of space objects, despite the turbulent atmosphere, by reconstructing

images from data provided by optical interferometers (particularly

stellar speckle interferometry). Major accomplishments include the

following:

1. A new closed-form recursive algorithm was invented for recon-

structing sampled objects having latent reference points.

2. Improvements in the iterative Fourier transform algorithm

were devised, solving the stagnation problems of stripes and

of simultaneous twin images.

3. Uniqueness of the reconstructed image was demonstrated

empirically.

4. Reconstruction of complex-valued objects was shown to be

possible.

5. The Hayes-Quatieri recursive algorithm was shown to suffer

from a uniqueness problem, and that algorithm was

general i zed.

6. An improved method for estimating the object's Fourier modu-

lus from stellar speckle interferometry data was devised.

In addition, other reconstruction algorithms were investigated.
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DIFFRACTION-LIMITED IMAGING OF SPACE OBJECTS
1 March 1982 to 31 October 1985

I
INTRODUCTION AND OBJECTIVES

This report describes the results of a three-year research pro-

gram to investigate methods for obtaining diffraction-limited images

of space objects, despite the turbulent atmosphere, by reconstructing

images from data provided by optical interferometers (particularly

stellar speckle interferometry).

Atmospheric turbulence typically limits the angular resolution

of earth-bound optical telescopes to one second of arc or worse,

which is fifty times poorer than the theoretical diffraction limit

of a 5-meter optical telescope. It is possible to gather

diffraction-limited information through the turbulent atmosphere by

a variety of interferometric techniques, including Michelson stellar

interferoinetry [1], intensity interferometry [2], amplitude inter-

ferometry [3], and stellar speckle interferometry [4, 5]. However,

this diffraction-limited information is in the form of the modulus

(magnitude) of the Fourier transform of the object being viewed.

Until recently only the autocorrelation oF the object, but not the

object itself, could be reconstructed from this data, except for

special cases.

In recent years, an iterative method [6-8] has been developed

for reconstructing an object from its Fourier modulus, thereby making

possible the reconstruction of diffraction-limited imagery from

interferometer data. The algorithm utilizes the measured Fourier

modulus data as well as (1) the a priori information that the

object's spatial (or angular) brightness distribution is a non-

negative function and (2) information about the object's diameter

which can be computed from the autocorrelation function. A detailed



ERIM

description of the problem of image reconstruction from earth-bound

optical telescopes including the iterative Fourier transform algo-

rithms and other algorithms is given in Appendix A [9]. Further

details on the iterative algorithm and its numerous applications

were described in detail in Appendix A of last year's interim scien-

tific report [10, 11].

The goal of the program is to further investigate and develop

this method of obtaining diffraction-limited images. Included in

the three-year program are investigations into improving the recon-

struction algorithm, developing methods for processing astronomical

data, and studying the uniqueness of the reconstruction. The first

two years effort were described in the interim technical reports

[12, 10]. In the third year of the effort, the emphasis was on de-

veloping improved reconstruction algorithms, demonstrating uniqueness

empirically and processing atmospherically degraded data. This re-

port summarizes the results of the entire three-year program.

The research accomplishments are summarized in Section 2 and are

described in more detail in the Appendices. References are listed

at the end of the report.

In overview, the results of the research program provide signifi-

cant advancement in the understanding of the reconstruction problem

and in the techniques available to solve it, which contribute toward

a capability of reconstructing diffraction-limited images despite

the presence of atmospheric turbulence. The results also serve as

an important vehicle for further applications, such as the recon-

struction of diffraction-limited images from degraded data provided

by an active imaging system that suffers from phase errors or even

total loss of phase information.
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II

RESEARCH ACCOMPLISHMENTS

The major research results accomplished during the three-year

program are as follows.

1. A new closed-form recursive algorithm was invented for re-

constructing sampled objects having latent reference points

[13].

2. Improvements in the iterative Fourier transform algorithm

were devised, solving the stagnation problems of stripes

and of simultaneous twin images [14].

3. Uniqueness of the reconstructed image was demonstrated em-

pirically for a class of satellite objects [15].

4. Reconstruction of complex-valued objects was shown to be

possible [16].

5. The Hayes-Quatieri recursive reconstruction algorithm, which

assumes knowledge of the values of the boundary of the ob-

ject, was shown to suffer from a uniqueness problem, and

that algorithm was generalized [17].

6. An improved method for estimating the object's Fourier mod-

ulus from stellar speckle interferometry data was developed

[18].

Additional research accomplishments are as follows.

7. A new version of the iterative Fourier transform algorithm,

the relaxation algorithm, was developed.

8. Work progressed toward understanding the uniqueness proper-

ties of the reconstructed image in the l-D case [19].

9. Alternative iterative algorithms were devised.

3



10. The shift-and-add algorithm was implemented and tested on a

complicated extended object.

11. Astronomical data taken with the PAPA detector was analyzed.

Publications arising from this work are References 9 and 13-30.

Reference 9 and 13 through 18 are included as Appendices A through

G, respectively.

Reference 26 was an invited paper to the ICO-13 meeting in

Sapporo, Japan in 1984. At the meeting, Dr. James R. Fienup received

the International Commission for Optics' 1983 International Prize in

Optics for his work in phase retrieval, which was largely the work

performed on this and the previous associated AFOSR contract [32].

The eleven topics mentioned above are briefly described in the

remainder of this section and are described in more detail in the

Appendices and in the Interim Reports [10, 12].

2.1 NEW RECURSIVE ALGORITHM

A new recursive algorithm has been developed which is capable of

reconstructing in closed form an object from its autocorrelation

function, which can be computed from the modulus of its Fourier

transform. It works for objects having latent reference points --

unresolved points within the object field that are not sufficiently

idr from the main part of the object to satisfy the condition for

holography, but satisfying weaker conditions. A more detailed des-

cription cf the algorithm is given in Appendix B.

The recursive algorithm was coded on a computer and exercised on

two different types of objects using autocorrelations having a vari-

ety of signal-to-noise ratios. As expected, the recursive algorithm

was highly sensitive to noise. As shown in Section 3 of [10], the

RMS error of the reconstructed image was 0.0400, 0.1390 and 0.6088

when the RMS error of the data was 0.005175, 0.01795 and 0.05585,

4
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respectively. This makes the recursive algorithm impractical com-

pared with the more robust iterative transform algorithm. Neverthe-

less, the recursive algorithm is useful in showing that some objects

are uniquely related to their Fourier modulus.

2.2 IMPROVEMENTS IN THE ITERATIVE ALGORITHM

In some cases, the iterative transform algorithm stagnates with-

out reaching a solution. That is, on successive iterations the out-

put image changes very little even though it is not a solution, i.e.,

it does not agree simultaneously with the Fourier modulus data and

the object-domain constraints. Two modes of stagnation were identi-

fied, and methods were developed to overcome both of them.

When the object has symmetric support (the support is the set of

points over which the object is nonzero), the iterative algorithm

often gets into a stagnation mode for which the output image has

features of both the object and its twin image (i.e., the object

rotated by 180°). This stagnation problem of simultaneous twin im-

ages can be overcome by using, for a few iterations, a reduced-area

support constraint that breaks the symmetry of the stagnation mode.

Use of the defogging method of Bates and Fright [33], as described

in Section 4 of [10], also helps. Since few space objects have pre-

cisely symmetric supports, this mode of stagnation does not usually

cause a problem when imaging space objects; it does occur frequently

for made-up problems such as a photographic image bounded by a

rectangle.

Another mode of stagnation is characterized by an output image

that resembles the true object but having a pattern of stripes super-

imposed. This problem occurs frequently for imaging satellites. In

most cases the stripes are of such low contrast as to be hardly

noticeable, and so they are not objectionable. In some cases, how-

ever, the stripes are of sufficiently high contrast to significantly

I5



degrade the quality of the image. After a few false starts, two

methods of overcoming this stagnation problem were developed. In

the "voting method," three output images having different sets of

stripes are produced by running the iterative transform algorithm

three times each with a different starting input of random numbers.

At each point in the Fourier domain, the complex Fourier transforms

of the three striped images are compared. The value that is farthest

from the other two is discarded and the other two are averaged to

arrive at a composite Fourier transform. In the "natching method"

only two different striped images are employed. The Fourier trans-

form of the area outside the object's support is used to identify

the regions in the Fourier domain in which the phase is in error

(which causes the stripes). A composite Fourier transform is formed

by patching together the "good" regions of the two Fourier trans-

.. forms. In addition, the origins of the stripes are better under-

stood. These results are described in detail in Appendix C [14].

2.3 UNIQUENESS DEMONSTRATION

In an earlier effort [34] an attempt was made to demonstrate

empirically the uniqueness of imagery reconstructed from Fourier

modulus data by performing reconstruction experiments and seeing

whether the reconstructed images resembled the original object or a

(possible) alternative solution. Although those results looked prom-
ising, they were hampered by the stripes stagnation problem discussed

above. With the improved reconstruction algorithm in hand (see

Appendix C), those uniqueness experiments were redone. The results,

as shown in Appendix D [15], demonstrate that for satellite imagery

viewed passively, the reconstructed image is usually unique in a

practical sense.

6
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2.4 RECONSTRUCTION OF COMPLEX-VALUED OBJECTS

The vast majority of the research effort was involved with recon-

structing real, nonnegative images as would be the case for passive

incoherent imaging. There are other remote sensing applications,

however, for which the object to be reconstructed is inherently

complex-valued. These are active, coherent imaging applications

such as synthetic aperture radar (SAR), imaging a laser-illuminated

object, and wavefront sensing. Despite the loss of the powerful

nonnegativity constraint, it was found that if one had a support

constraint that was sufficiently tight and of a strong type, then it

was possible to reconstruct a complex object from the modulus of its

Fourier transform. These results are shown in Appendix E [16].

These results point to further applications of phase retrieval for

remote sensing.

2.5 RECONSTRUCTION USING BOUNDARY VALUES

Hayes and Quatieri (H-Q) [35], devised an algorithm for recon-

structing a real-valued sampled object from its autocorrelation func-

tion assuming that one knew a priori the values of the boundary

(edges) of the object. They also claimed that the reconstruction

was always unique [35]. In Appendix F [17], four results regarding

the H-Q recursive algorithm are described. First, knowledge of the

boundary values of the object is not sufficient to ensure a unique

reconstruction. Second, even when the solution is ultimately unique,

the H-Q recursive algorithm can have ambiguities in intermediate

steps. Third, an extension to the H-Q recursive algorithm is given

that does find the solution. Fourth, it is demonstrated that the

algorithm can be applied to complex-valued objects as well as real-

valued objects.

7
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2.6 ESTIMATING FOURIER MODULUS FROM SPECKLE IMAGES

The Labeyrie method (stellar speckle interferometry) of estima-

ting the (squared) modulus of the Fourier transform of the object

involves averaging over the squared moduli of the Fourier transforms

of many independently degraded speckle images [4]. A new maximum

likelihood estimator of the Fourier modulus has been derived. It

uses the same data as the Labeyrie method but, using knowledge of

the statistics of the atmospheric blurring process, arrives at a

better estimate of the Fourier modulus. This estimation procedure

is described in Appendix G [18].

2.7 RELAXATION ALGORITHM

Earlier investigations [32] showed that the simplest form of the

iterative Fourier transform algorithm, the "error-reduction" algo-

rithm, converged much too slowly to be practical. Improved "input-

output" algorithms converge much faster, in fewer than 100 itera-

tions. In seeking still faster convergence, a relaxation-parameter

algorithm was devised. It involves solving for the optimum linear

combination of two estimates. One version of the relaxation method

involves reversing the roles of the two domains -- the object and

Fourier domains (then the linear combination is performed in the

Fourier domain). This Fourier-domain relaxation approach is better

justified mathematically because enforcing the object-domain con-

straint is a projection in a Hilbert space onto a convex set. A

mathematically tractable solution for the optimum linear combination

involves the use of a new error metric and the (closed-form) solution

of a cubic equation. This is described in some detail in Section 3

of [12]. Unfortunately there was no success making the relaxation

algorithm perform even as well as the hybrid input-output version of

the iterative Fourier transform algorithm. Part of the reason for

the lack of success may be that a linear combination that moves the

solution in the direction of the correct Fourier phase typically

8
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yields a result that has too much energy (sum of values squared).

One potential solution to this problem would be to redefine the lin-

ear combination to be a normalized linear combination. Unfortu-

nately, to find the optimum normalized linear combination one must

solve a messy nonlinear equation, which we have not succeeded in

doing analytically. Another possibility would be to allow for more

than one parameter to define the linear sums. Although the relaxa-

tion approach has not yet yielded a useful reconstruction algorithm,

the approach still merits further research.

2.8 UNIQUENESS WITH SEPARATED SUPPORT

By using the theory of analytic functions, it was shown that

one-dimensional (1-D) objects consisting of sufficiently separated

parts are usually uniquely related to their Fourier modulus [19].

This is in sharp contrast to the usual 1-0 case for which there are

an enormous number of ambiguous solutions. This is described in

detail in Appendix B of [12].

2.9 ALTERNATIVE ITERATIVE ALGORITHMS

The theoretical justification for the input-output iterative

Fourier transform algorithm [6-8] alludes to a control theory point-

of-view. Yet rigorous control theory had not actually been applied

to the problem. Two alternative algorithms based on control theory

were formulated (see Section 5 of [10]).

In the first, it is assumed that the individual sidelobes of the

complex Fourier transform of the object can be modeled by a fairly

simple mathematical formula having a small number of free parameters.

By curve fitting each lobe of the Fourier modulus to the model, one

could determine the parameters and thereby determine the phase. One

would first curve fit one larger lobe, compute the magnitude of the

model from the fitted parameters, and subtract that model from the

9
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modulus measurement. Smaller lobes would be curvefitted and sub-

tracted resursively from the residual modulus. After all the lobes

are modeled, the corresponding phase would be combined with the meas-

ured modulus and the image would be computed by inverse Fourier

transformation. It is yet to be determined whether the Fourier

transform can be modeled as described above.

In the second algorithm, the difference in the phase of the

Fourier transform of the current estimate and that of the previous

estimate is multiplied by a gain factor and added to the previous

phase estimate. This is similar to previous iterative algorithms

except that the roles of the two domains are reversed.

Both the methods described above, as well as others, merit fur-

ther research and implementation.

2.10 SHIFT-AND-ADD

Shift-and-add [36, 37] is a method of reconstructing images of

astronomical objects from multiple short-exposure images. It con-

sists of shifting all the images so that their maximum values all

lie at the same coordinate, then adding (or averaging) them all.

This has been shown to work well for objects consisting of a collec-

tion of delta functions (points) [36, 37], but it was not demonstra-

ted for realistic extended objects, such as satellites. We imple-

mented the shift-and-add method on the computer and exercised it on

data both for an object consisting of a collection of delta functions

and for an extended object.

For the first object, consisting of three delta-functions having

relative brightnesses of 10:2:1, the results of applying shift-and-

add to 156 severely blurred images resulted in a somewhat blurred,

but very recognizable image of the object. We took shift-and-add one

step further by combining it with a form of subtractive deconvolution

related to the CLEAN method. Then the resulting image was excellent.

10
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A similar experiment was performed for an extended object -- the

satellite shown in Figure 7.4-4 of Appendix A. In that case, the

reconstructed image resulting from shift-and-add was very poor

whether or not CLEAN was used. These results are shown in Section 7

of [10].

This one set of experiments was not sufficient to fully delineate

the types of objects for which shift-and-add is effective, but we

did demonstrate that shift-and-add works very well for an object

consisting of a small number of delta-function-like points dominated

by a brightest one, but works very poorly for an extended object,

even one containing isolated bright points.

2.11 ANALYSIS OF ASTRONOMICAL DATA

Tne Harvard-Smithsonian Center for Astrophysics supplied us with

two stellar-speckle interferometer data sets, one of a binary star,

the other of Jupiter's moon Io. Each data set was recorded with the

PAPA photon-counting camera [38] and consists of a stream of detected

photon events. Associated with each photon event is a mark denoting

the time and location of the event on the detector.

As required for the iterative algorithm, an estimate of the mod-

ulus of the Fourier transform of the object is formed by using

Labeyrie's method of stellar-speckle interferometry. Each data

stream is partitioned in time into a sequence of 10 millisecond expo-

sures; each exposure is then Fourier transformed and averaged. The

result is proportional to an estimate of the modulus of the Fourier

transform of the object under measurement.

Included in the estimate are the effects of the non-uniform photo

response of the camera as well as the modulation transfer function

(MTF) of the speckle process. The non-uniform photo response can be

corrected to first order by a flat-fielding operation in which each

exposure is divided by an image of a uniform flood source. The MTF

11
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is removed by dividing the estimated modulus by an estimated modulus

from a point-like reference star, which is an estimate of the mod-

ulus of the transfer function of the speckle process.

The data we received included the binary star and Io data plus

their respective reference star images and a flat field image. Upon

examination of the data, we noticed artifacts in the images which

appeared as a burlap-like texture modulated by the actual image con-

tent. Figure l(a) shows the flat field image and Figures l(b) and

l(c) show long exposure images of the binary star data before and

after flat-field correction. Figure 2 shows the same things for the

reference star. The sample-standard deviation within a 32 by 32

region of the flat field image was 37 percent; adjacent pixels in

this region varied by as much as 250 percent. The sample-standard

deviation of the corresponding region of the binary star data was

37 percent before a flat-field correction and 24 percent after a

flat-field correction. These artifacts are inherent in the data

collection process and discouraged us from investing any further

computer time in the reconstruction of images from the Fourier mod-

ulus data. Information about a better flat-fielding method was prom-

ised by Harvard but was never received. This data deserves further

processing, but only after a better flat-fielding is achieved.

12



Figure 1. Flat Fielding Experiment with Binary Star Data. (a) Flat
field; (b)long-exposure binary star raw image; (c) binary
star image after flat field correction.
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Figure 2. Flat Fielding Experiment with Reference Star Data.
(a) Flat field; (b) long-exposure reference star raw
image; (c) reference star image after flat field
correction.

14
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Appendix A

PHASE RETRIEVAL AND IMAGE RECONSTRUCTION FOR ASTRONOMY

J.C. Dainty

Blackett Laboratory
Imperial College

London SW7 ZBZ ENGLAND

and

J.R. Fienup

Environmental Research Institute of Michigan
P.O. Box 8618, Ann Arbor, MI 48107 USA

Submitted to Image Recovery: Theory and Application,

H. Stark, Ed., Academic Press, Publisher, Chapter 7
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7.1 Introduction

In optical astronomy, the traditional way of obtaining an object

map or object intensity f(x,y)+ is to use a single large telescope

to record a conventional long-exposure image. This image can be

enhanced, if necessary, using the standard techniques of digital

image processing. Although this may, at first sight, seem to be the

most obvious method of estimating the object intensity, it suffers

from two drawbacks. First, for Earth-based observation, atmospheric

turbulence limits the resolution obtainable to approximately one

arc-second (at the best observing sites) compared to the limit set

by diffraction, amin -x/D, where x is the wavelength and D is the

telescope diameter. This limit is approximately 0.02 arc-sec for a

5m telescope at a wavelength of 400 nm. Second, ignoring atmospheric

turbulence, the diameter D of a single large telescope limits the

resolution (as above) and it is difficult to imagine a telescope with

a diameter greater than about 50m in the forseeable future.

The solution to the problem of limited resolution lies with a

family of techniques which can be described as interferometric

imaging. The basis of these is the van Cittert-Zernike theorem [1,

Sections 5.6 and 7.4], which, in the form of use in astronomy, states

that the spatial coherence function F(u,v) in the far-field of a

thermal light source is proportional to the Fourier transform of the

object intensity f(x,y). The spatial coherence of starlight can be

measured using a variety of techniques, including speckle and

Michelson interferometry.

Some of these interferometric methods are particularly suited to

long baseline and synthetic aperture techniques, in which the

'In astronomy, it is customary to use angular variables (a,s)
instead of the spatial variables (x,y) used in this chapter.
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"diameter" D is potentially 1 km or more, providing the possibility

of sub-milliarcsecond resolution in the future. Synthetic aperture

techniques are of course widely used for imaging in radio-astronomy.

Interferometric imaging techniques in optical astronomy all

suffer from one major disadvantage: it is difficult, and sometimes

impossible, to get an accurate estimate of the phase of F(u,v). We

are then faced with the problem of reconstructing the object

intensity f(x,y) either from IF(u,v)I alone or with limited phase

information. In both cases, the modulus (and phase information, if

any) is known only within a finite region of the spatial frequency

(u,v lane typically in a band extending from 0 to

S2 + V2 = D/x. In addition, f(x,y) is known to bemax max
a nonnegative function and of finite extent.

In Section 7.2 we summarize the uniqueness aspects of phase

retrieval from modulus-only data (this is discussed in Chapter 6 in

more detail). Section 7.3 describes several algorithms for modulus-

only data, both for special and general objects. Iterative

algorithms have proved to be the most successful in practice and

Section 7.4 describes these and gives detailed instructions on how

to obtain satisfactory reconstructions using a particular iterative

approach. In the final section, we describe a number of solutions

to the phase problem in optical astronomy that are specific to

speckle and pupil plane (Michelson) interferometry. All of these

utilize the (limited) phase information provided by these particular

observing techniques.

Other reviews of stellar speckle interferometry can be found in

References 2-4.

7.2 Uniqueness of Phase Retrieval from Modulus Data

In interferometric imaging, an attempt is made to measure the

object's Fourier transform
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F(u,v) = F(u,v)J exp [exp ip(u,v)]

fff(xy) exp [-i21r(ux + vy)] dx dy, (7.2-1)

where f(x,y) is the object's brightness or intensity distribution,

JF(u,v)J is the Fourier modulus and (u,v) is the Fourier phase. In

the extreme case of severe atmospheric turbulence, which is

ordinarily the case at optical wavelengths, only IF(u,v) can be

measured faithfully and all information about the phase, p(u,v), is

lost. Then two questions arise: first, how can one reconstruct

f(x,y), or equivalently reconstruct (u,v), from [F(u,v)

given the a priori information that a physical brightness

distribution is a real, non-negative function? This first question

is answered in Sections 7.3 and 7.4 which discuss various

reconstruction algorithms. The second question is, given an image

produced by a reconstruction algorithm, how does one know whether it

is unique? That is, might not there be other real, non-negative

solutions having the same Fourier modulus ?

First it is necessary to recognize that f(x,y),

f(x - X0,Y - yO), and the image rotated by 1800 (reflected

through the origin), f(-x - xo,-y - yO), all have the same

Fourier modulus. This fundamental ambiguity does not cause much

concern since it is the appearance of the object that is usually

sought rather than its position. The position and the 1800

rotational ambiguity can be easily resolved in many cases from a

very low-resolution image of the object. If the above fundamental

ambiguities are the only ambiguities, we refer to the object as being

unique; only ambiguous solutions having different forms than the

object are considered ambiguous.
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Until less than one decade ago, there was much pessimism that

the phase retrieval problem could be solved or that the solution

would be useful, because the available theory at the time, which was

for one-dimensional functions, indicated that there were hopelessly

many ambiguous solutions [5]. It can be shown that Fourier

transforms of one-dimensional functions of finite support are

analytic functions of exponential type. They are characterized by

their complex zeros, i.e., the locations of the zeros of the

(Fourier) function analytically extended into the complex plane, by

F(z) f f(x) e-i2x zdx, (7.2-2)

where z = u + iu', u being the physical real axis and u' being the

imaginary axis. If the set of complex zeros, for which F(z) = 0,

are 1zn}, then the Fourier transform can be expressed as the

Hadamard product

F(z) [ ( - ZZ). (7.2-3)
n z/zn

n=1

Givenj F(u)1 2 = F(u)F*(u), the complex zeros of its analytic

extension into the complex plane, IF(z)1 2 = F(z)F*(z*), can be

computed, but they include both the zeros, {Z nl, of F(z) and the

zeros of F(z*), which are {Zn}.

If F(z) has N complex zeros, then not knowing which of the 2N

complex zeros of IF(z)I 2 go with F(z) and which go with F(z*)

leads to a 2 N-fold ambiguity. (Half of this number of solutions

are the mirror images of the other half, reducing the ambiguity to

2N-l-fold.) Ordinarily, N is comparable to the space-bandwidth

product of f(x), and so 2N is an enormous ambiguity, making the

one-dimensional problem seem hopeless. Only for the case of objects

known to consist of two separated parts is the one-dimensional phase

retrieval problem likely to be unique and therefore interesting

[6-8].
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The first indications that the situation is much different in

two dimensions came from empirical reconstruction experiments

[9, 10]: images that were reconstructed looked like the simulated

objects used to compute the Fourier modulus data. Those results gave

hope that the two-dimensional problem may be soluble and unique,

giving impetus to attempts to extend the one-dimensional theory of

analytic functons to two dimensions in such a way that predictions

concerning uniqueness could be made . Unfortunately, that

theoretical level of understanding of the two-dimensional problem,

while progressing [11-16] has not matched that available for the

one-dimensional case.

If the object is approximated by an array of delta functions or

by an array of numbers in a computer, then its Fourier transform

reduces to a discrete Fourier transform which, with a change in

variables, can be written as a polynomial of a complex variable.

When this discrete approximation is made, then one can understand

the vast difference between the one-dimensional and two-dimensional

phase retrieval problems [16]. It can be shown in the

one-dimensional case that the zeros of the polynomial are analogous
to the complex zeros for the continuous (analytic functions) case,
and that there are 2N-1 ambiguous solutions where N is the number

of factors into which the polynomial can be factored. Since the

fundamental theorem of algebra states that a polynomial of degree N

has N prime (irreducible) factors, one has a high degree of ambiguity

for the one-dimensional case. As was pointed out by Bruck and Sodin

[16], it is known that polynomials of two complex variables are

rarely factorable. Hence the two-dimensional phase retrieval problem

is usually unique (ignoring noise issues). Chapter 6 describes the

uniqueness issues for discrete functions in some detail.

Although most two-dimensional discrete objects are unique, one

would like to know what conditions ensure uniqueness. As described

in Section 6.3, objects whose Fourier transforms satisfy Eisenstein's
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criterion are unconditionally unique [17]. The type of support that

the object must have (i.e., the set of points or the shape within

which the object is nonzero) to satisfy this criterion is the only

known support which guarantees unconditional uniqueness. The

uniqueness of such objects can also be demonstrated by the existence

of a recursive algorithm (a closed-form solution) that can

reconstruct such objects from their Fourier modulus via their

autocorrelation functions [18]. This recursive algorithm can also

be used to reconstruct in closed form objects having other supports

as well, such as triangular supports having nonzero corners. But

for these other objects the support must be known a priori, since

there may be other solutions having different supports [18]. Objects

that are unique among the class of objects having that given support

include all objects for ,,hich the convex hull of their support is a

polygon having no parallei sides [19, 20]. Another such class of

objects are those satisfying the holography condition: the object

consists of an extended part plus a delta function (unresolved

component) separated from the extended part by a distance greater

than the diameter of the extended part. Then the extended part of

the object is found as an isolated term in the autocorrelation

function. Note, however, that objects satisfying the holography

condition are not necessarily unique among all objects -- they are

only guaranteed to be unique among the class of objects satisfying

the holography condition.

Although it remains to be proven definitively, the general

feeling is that the physical case of interest, the two dimensional

continuous case, mirrors the discrete case and will, except for

special objects, usually (but not always) be unique. It does not

appear that the addition of small amounts of noise will change that

assessment [21].
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7.3 Algorithms for Phase Retrieval from Modulus

Since most phase retrieval/image reconstruction algorithms are

performed on sampled data in the computer, we will employ the

discrete Fourier transform

F(u,v) = IF(u,v)I exp [i(u,v)] = --[f(x,y)]

N-i N-i

= E f(x,y) exp [-i2w(ux + vy)/N] (7.3-1)

x=O y=O

and its inverse

N-i N-i
f(x,y) = N-2 E E F(u,v) exp [i2r(ux + vy)/N] (7.3-2)

u=O v=O

where u, v, x and y = 0, 1, 2, . . ., N - 1 (for simplicity square

arrays are assumed). Any computation of the discrete Fourier

transform is of course accomplished using the Fast Fourier Transform

(FFT) method. Note that in order to compute IF(u,v)1 2 without

aliasing it is required that f(x,y) be zero outside of 0 < x < M -

and 0 < y < M - 1, where M < N/2. The autocorrelation of f(x,y) is

given by

N-i N-1
rf(x,y) = E f(x',y')f(x' - x, y' - y) (7.3-3)

x'=O y.=O

='IF(u,v) 1 2 ]. (7.3-4)

The problem of reconstructing (u,v) or f(x,y) from IF(u,v)l or
from rf(x,y) has received much attention, especially within the

last decade. Section 7.3A describes several reconstruction methods

that are tailored to special types of objects. Most of these methods

work only for objects consisting of a collection of delta-function-

like points or at least containing a point-like component. Although
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they only work for such special cases, they are of interest because

in astronomy the existence of point-like stars is common and these

methods tend to be simpler than the methods for more general objects.

Section 7.38 describes more general methods designed to work on most

types of astronomical objects (objects of finite extent). Section

7.4 describes in more detail the iterative Fourier transform

algorithm, which as been the most general and most successful

reconstruction algorithm to date.

A Algorithms for Special Types of Objects

(i) Holography

The classic reconstruction method, discussed briefly in Section

7.2, is holography [22]: when the object includes a delta-function

component (an unresolved point called the reference point)

sufficiently separated from the rest of the object, then the object

can be found as one term in the autocorrelation. Although holography

was originally conceived for applications employing coherent light,

the same principles apply for incoherent light if one has measured

the modulus of the Fourier transform of the object [23, 24].

(ii) Recursive Reconstruction Using Latent Reference Points

The closed-form recursive method [18] mentioned in Section 7.2

is akin to holography. It requires the existence of two or more

reference points, making it more restrictive than the holography

condition, but these reference points can be very close to the

extended part of the object, making it less restrictive than the

holography condition. These reference points satisfy the holography

condition only for the far edge of the object which is immediately

reconstructed from the autocorrelation. After those edge points are

solved (including the reference points), then at least one of the

autocorrelation values can be expressed as a sum of products of the

previously solved points plus the product of an unknown point with a
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reference point. This single linear equation in a single unknown

may be solved trivally. The rest of the points in the object are

solved recursively in a similar manner. The reference points are

refered to as latent since they cannot be used to solve for the

interior points in the object until the exterior points are first

reconstructed. This algorithm works only for particular types of

sampled objects, including those for which the convex hull of their

support is a polygon having no parallel sides + [20]. As mentioned

in Section 7.2, one must know the support a priori to employ this

algorithm. Except in special cases, given just the support of the

autocorrelation one cannot find the support of the object [25]: one

can only narrow down the possibilities.

(iii) Difference Fourier Synthesis

Some of the phase retrieval methods from x-ray crystallography

[26] can be used for the astronomical application. One of these is

difference Fourier synthesis [27]. Suppose the object consists of a

collection of point-like stars and one has an estimate of the object

that contains some, but not all, of the object's stars. One creates

a new image by (1) Fourier transforming the estimate of the object,

(2) replacing the computed Fourier modulus by the true Fourier

modulus while keeping the computed Fourier phase, and (3) inverse

Fourier transforming the result. Under the assumptions mentioned

above, it can be shown that the new image will contain the stars

missing in the object's estimate, but at half their true value. So

by taking the difference between the new image and the estimate of

the object one can identify the locations and relative brightnesses

+Note that Figure 6(a) in [18] has two solutions rather than
the single solution claimed. It would have a single solution if
either point C' or point C" were zero.
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of the missing stars and use that information to form a new estimate

of the object. This algorithm must be applied iteratively because

extraneous terms are produced in the new image along with the desired

missing stars. This method was successful for point-like objects

but not for extended objects [27]. It is tantalizingly close to the

iterative transform algorithm described in Section 7.4 which is

applicable to a much more general class of objects.

(iv) Products of Autocorrelations

If the object consists of a collection of point-like stars, then

the autocorrelation, rf(xy), also consists of a number of point-

like terms. First one computes the product rf(x - xo, y - yo).

rf(x,y), where the point (xo,Y o ) is one for which rf(xo,Yo)

is nonzero. Next one computes the triple product

rf(x - xl, y - yl) rf(x - xo, y - yo) rf(xy), where

the point (xl,yl) is one for which rf(x I - xo, Yl - yo)"

rf(xl,Y l) is nonzero. If the object points satisfy certain

nonredundancy conditions, then the support of the triple product is

identical to the support of the object (or the object rotated by

180"). Furthermore, the values of the object can be reconstructed

in closed form by some very simple equations involving taking the

cube root of (all but three of) the points in the triple product

[25]. The nonredundancy conditions that the object must satisfy are

that (1) the vector separations between three pairs of six distinct

points must not sum to zero, (2) the vector separations between two

different pairs of points must not be equal, and (3) the vector

separation between one pair of points must not equal twice the vector

separation between another pair of points. It is likely that a

randomly-distributed collection of stars would satisfy the

nonredundancy conditions unless the number of stars in the image is

large.
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B Methods Proposed for General Objects

The phase retrieval problem for general objects of finite support

can be approached in a number of ways. A brute-force searching

through all possible objects or all possible phases is, of course,

impossible. For example if there are K different values for each of

the M2 pixels of f(x,y) that must be searched to see which objects

agree with the given Fourier modulus, then the number ofKM2

possibilities to be investigated is K , an overwhelming number,

even for K = 2. If each of the particles in the universe were a

computer that could search lO9 objects per second, then it would

take the age of the universe to search all possible binary objects

for M = 19. Clearly a very intelligent algorithm is needed to

search through the possible

objects to find one consistent with the Fourier modulus data.

Consider taking the modulus squared of both sides of Eq. (7.3-1)

or simply use Eq. (7.3-3). In either case one has a system of N
2

nonlinear equations -- one for each value of IF(u,v)1 2 or of

rf(x,y) - in M2 unknowns, the values of f(x,y) within its

support. One could equally well treat the Fourier phases as the

unknowns. Obviously there is a high degree of redundancy in the set

of equations since there are more equations than unknowns.

Nevertheless for large values of M and N the solution of a set of

such nonlinear equations is a formidable task.

The classic approach to such a problem is to define an error

metric for any given estimate for the object (or for the phase) and

use a Newton-Raphson or a gradient search method to seek a solution,

that is, an estimate for which the error metric is zero. For

example, the error metric could be

N-1 N-1

Er = [rg (x,y) - rf(x,y)] 2  (7.3-5)

x=O y=O
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where r (x,y) is the autocorrelation of g(x,y), an estimate of

f(x,y). If Er = 0 for a g(x,y) that satisfies the object-domain

constraints, then g(x,y) is a solution. The solution is necessarily

equal to f(x,y) only if the phase retrieval problem is unique for

f(x,y), but at the reconstruction stage of the game this is not a

problem since we are only concerned with finding a solution (or

solutions).

The error metric Er can be thought of as a function in an

M2-dimensional space where the values g(x,y) are the coordinates

of the space. The collection of the M2 values of g(x,y) can be

thought of as an M2-dimensional vector coordinate in that space.

The problem is to find, within the subset of that space for which

g(x,y) satisfies the object-domain nonnegativity and support

constraints, the point at which Er is at a global minimum

(Er = 0 if no noise is present). One can seek the global minimum

by starting with an estimate, g0 (x,y), computing the gradient of

Er at that point, and use that information to step down the side

of the hill toward a lower value of Er at a new estimate gl(x,y).

Further steps are taken iteratively until the global solution is

found or until stagnation occurs at a local minimum.

(i) Newton-Raphson

The Newton-Raphson method [28] involves the local linearization

of the problem by expressing r (x,y) in Eq. (7.3-5) in a Taylor

series expansion about the current estimate, gk(xy):

g(x,y) = gk(xy) + Ag(x,y), (7.3-6)

and keeping only up to first-order terms:

ar (x,y)rg(X,y) r rg(X,y) + g( y ag(x',y'). (7.3-7)

x y
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Inserting this into the expression for Er, Er is minimized by

setting equal to zero the partial derivatives of Er with respect

to ag(xoYo) for each value of (xoYo ). This gives a system

of M2 linear equations in M2 unknowns (the ag's) which can be

solved by the inversion of an M2 by M2 matrix. A new estimate

is given by Eq. (7.3-6) and the procedure is repeated. The matrix

inversion takes on the order of M6 operations, making this method

computationally very intensive despite the fact that only a small

number of iterations are required.

(ii) Gradient Search

Although requiring several times as many iterations as the

Newton-Raphson method, gradient search algorithms are attractive

because the amount of computation per iteration is far less.

Ordinarily the computation of the gradient itself, if done using

finite differences, would be very time consuming, requiring one or

two times M2 FFT's. However, by a proper choice of the error

metric it is possible to compute the entire gradient using only two

FFT's [29]. If the error metric is defined in the Fourier domain by

N-i N-1

EF [IG(u,v)I - IF(u,v)1] 2 , (7.3-8)

u=O v=O

where G(u,v) is the Fourier transform of the current estimate g(x,y),

then it can be shown that the bulk of the computation for the

gradient can be accomplished by the first three steps of the

iterative transform algorithm, which is described in Section 7.4.

In general, the kth iteration of a gradient search method would

proceed by computing a desired direction, dk(xy), in which to go

from a given object estimate, gk(xy), and take a step of size hk

in that direction:

gk(xy) - gk(xy) + hk dk(xy) (7.3-9)
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For the steepest descent gradient search method, dk(xy) is just
the negative of the partial derivative of E2 with respect to

g(x,y). For the conjugate gradient method, dk(xy) is a linear

sum of the negative of the gradient and dkl(x,y). After stepping

to gk(x,y) a test is made to see if it violates the object-

domain constraints. It usually does, and a new estimate gk+l(xy)

is taken to be the function in object space satisfying the object-'a

domain constraints that is closest to gk(xy). [In the language

of Chapter 8, gk(xy) is projected onto the space of functions

satisfying the constraints.] As for most applications, the steepest

descent method is very slow to converge, and the conjugate gradient

method is much better [29]. Although the gradient search methods

have not proved to converge as quickly as the algorithm described in

Section 7.4, they have not yet been fully optimized and deserve

further study.

(iii) Tracking of 1-0 Complex Zeros

The method of tracking 1-D complex zeros [lO] starts with

one-dimensional radial cuts through the Fourier modulus. By the

projection-slice theorem a radial cut through the 2-D Fourier

transform is the 1-D Fourier transform of the projection of the

object along a direction perpendicular to the direction of the radial

cut. As mentioned in Section 7.2, there are 2N different solutions

for a given 1-D radial cut, all of which can be computed by using

different combinations of the conjugated or nonconjugated zeros

_{zn' "zn Of these solutions only a small fraction will

correspond to nonnegative projected images, and only those need be

retained since the object brightness distribution is known to be

nonnegative. As the angle of the cut is rotated slightly, the

complex zeros should change in a continuous fashion, and so the

complex zeros for one cut can be associated with the complex zeros

for other cuts. By finding the complex zeros that yield nonnegative

projected images over a range of cut angles, one can identify the set
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of zeros IZn associated with each cut of the Fourier transform

and solve the 1-D phase retrieval problem for each of the cuts,

thereby solve the 2-D phase retrieval problem. This method has the

disadvantage of having to compute 2N different images for a number

of cuts, which is computationally very burdensome. Application of

this method gave one of the first indications that the 2-0 problem

is more likely to be unique than the 1-D problem [10].

(iv) Making 1-D Complex Zeros Consistent Between Orthogonal Cuts

Employing a similar philosophy to the method described above,

this method [30] computes the complex zeros of 1-D cuts through the

2-D Fourier modulus squared, and then from the complex zeros computes

all 2N different phase solutions for each cut. In this case the

cuts are each line and each column of the 2-0 Fourier transform. At

each point in the Fourier domain a true solution must have a phase

that is consistent with the phase of both orthogonal cuts. By

checking consistency in phase at each point amongst all 2N possible

phases for each cut, it is possible to find what 2-D phase functions

are consistent across the entire Fourier domain. A disadvantage of

this method is the enormous computational burden of computing 2N

solutions for each of 2N cuts and comparing all the potential

combinations.

(v) Sampling Theorem Methods

The use of the sampling theorem is based on knowing that the

object is of finite extent. If the object is zero outside a square

of length L centered at the origin, then the Shannon sampling theorem

gives us

F(u,v) = F(pau,qav) sinc (U uPau) sinc(v -vqAv ) (7.3-10)

p q
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where au = av = L- . In the sampling theorem method [31, 32], the

samples F(pau,qav) are estimated by IF(pau,qav)I exp [io(pau,qav)],

where 0 is an estimate of the unknown phase. This is inserted into

the right-hand side of Eq. (7.3-10), which is evaluated at the

half-integer coordinates, and the squared modulus is computed. Since

adequate sampling of IF(u,v)t 2 is twice the sampling required for

F(u,v), and it is assumed that IF(u,v)I2 was adequately sampled,

the computed squared modulus values can be compared with the measured
2 2

value of IF(u,v)I . This leads to a system of N nonlinear

equations in N2 unknowns which can be solved, for example, by the

Newton-Raphson algorithm. This differs from the Newton-Raphson

method discribed in Section 7.38(i) -- the set of nonlinear equations

to be solved are different - but the computational complexity is

the same.

A computationally more efficient version of the sampling theorem

method has been devised [33]. Letting v = 0, Eq. (7.3-10) reduces to

F(u,O) = F(pau,O) sinc (u - pAu). (7.3-11)

p

Since the half-integer values of u along the v = 0 axis depend only

on the sampled values along the v = 0 axis, the phase of F(u,O) can

be determined by solving the one-dimensional problem which involves

only N nonlinear equations in N unknowns. In a similar fashion,

given F(pau,O) for each integer value of p the phase of F(pAu,v) can

be determined by solving ' system of N nonlinear equations in N

unknowns. The total required computation to solve (N + 1) sets of N

nonlinear equations in N unknowns, when solved by the Newton-Raphson

method, involves (N + l)N3 operations times the number of

iterations per 1-D solution, which is a great savings compared with

the fully 2-0 form described earlier. A disadvantage of this method

is that each of the 1-0 problems that is solved is just one of the

2N ambiguous solutions that are always present for the 1-D
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problem. Consequently this method will fail unless one starts with

an initial estimate very close to the true solution or until one

finds a way of incorporating more constraints into the algorithm.

A third variation on the sampling theorem method is the crude

phase estimation method [34]. If one approximates the sinc (u)

kernels in Eq. (7.3-10) by a function that is unity at u = 0, a

constant 8 at u = *1/2, and is zero for all other integer and

half-integer values of u, then Eq. (7.3-10) simplifies to such an

extent that the phase can be expressed in closed form as a function

of the modulus of Eq. (7.3-10). The closed-form expression involves

an arc-cosine function which leads to two-fold sign ambiguity, which

can be resolved by a consistency check over a closed 2-0 path in

Fourier space [34]. While this method is computationally simple, it

unfortunately yields only a very crude estimate of the Fourier phase

owing to the crudeness with which the sinc function is approximated.

7.4 Iterative Transform Algorithm

The iterative transform algorithm is a descendant of the

Gerchberg-Saxton algorithm [35-37]. It bounces back and forth

between the object domain, where a priori knowledge about the object

-- its nonnegativity and bounds on its support -- are applied, and

the Fourier domain, where the measured Fourier modulus data is

applied. The iterative transform algorithm differs from the

Gerchberg-Saxton algorithm both in the type of data and constraints

available and in the more powerful object-domain operations applied

for the hybrid input-output version of the algorithm. The iterative

transform algorithm has been the most successful method for

reconstructing nonnegative objects from the modulus of their Fourier

transforms because it works for the most general types of objects,

uses all the available data and constraints, is not highly sensitive

to noise, and is not as computationally burdensome as most other

methods. In Section 7.4A the basic iterative algorithm is
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described. Additional details that will be helpful to the practical

implementation of the algorithm are included in Section 7.4B. In

some difficult cases the basic iterative transform algorithm fails

to converge to a solution. Distinct modes of stagnation have been

identified and methods for overcoming them have been devised, as

described in Section 7.4C. Section 7.4D shows an example of a

simulation of noisy stellar speckle inteferometry data, Fourier

modulus estimation and iterative transform reconstruction.

A The Basic Iterative Algorithm

(i) The Error-Reduction Algorithm

The simplest version of the iterative transform algorithm

follows the philosophy of the Gerchberg-Saxton algorithm [35-37],

and it is known as the error-reduction algorithm [9, 29, 38]. It

can be viewed in a number of different ways: in terms of the method

of successive approximations [39], as a form of steepest-descent

gradient search C29], or as a projection onto sets in a Hilbert space

(the Fourier modulus constraint being onto a nonconvex set, however,

so convergence is not assured). The latter point of view is

described in more detail in Chapter 8.

For the most general problem, the error-reduction algorithm

consists of the following four steps (for the kth iteration):

(1) Fourier transform gk(xy), an estimate of f(x,y), yielding

Gk(uv); (2) make the minimum changes in Gk(uv) which allow it

to satisfy the Fourier-domain constraints to form G'k(Uv), an

estimate of F(u,v); (3) inverse Fourier transform G'k(Uv),

yielding g'k(xy), the corresponding image; and (4) make the

minimum changes in g'k(xy) that allow it to satisfy the

object-domain constraints to form gk+l(xly), a new estimate of the

object. For phase retrieval for a nonnegative object from the

Fourier modulus IF(u,v)l, these four steps are
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Step 1: Gk(uv) =I Gk(uv) exp [i4k(U,V)] =ZC [gk(xy)], (7.4-1)

Step 2: G(u,v) = IF(u,v)I exp [iok(U,v)], (7.4-2)

Step 3: g (xy) =T i-[G%(u,v)], (7.4-3)

fg (xy), (x,y) Y

Step 4: gk+l(xy) = (7.4-4)
1 0, (x.y) Y,

where y is the set of points at which g'k(xy) violates the

object-domain constraints and where gk' G'k and Ok are

estimates of f, F and the phase of F, respectively. The algorithm

is typically started by using an array of random numbers for

0 (x,y) or for 60 (u,v). Figure 7.4-1 shows a block diagram of

the iterative transform algorithm.

For the astronomy problem, the object-domain constraints are the

object's nonnegativity and a (usually loose) support constraint.

Then the points in the set y are those outside the assumed support

and those within the support for which g'k(xy) < 0. The diameter

of the object can be computed since it is just half the diameter of

the autocorrelation; however, the exact support of the object in

general cannot be determined uniquely from the support of the

autocorrelation [25], and so the support constraint cannot be

applied tightly. For other problems, one may not have a

nonnegativity constraint, but have a priori knowledge of a tighter

support constraint [40].

For the problem of phase retrieval from two intensity

measurements [i.e. IF(uv)12 and Jf(x,y)I 2], g'k(xy) =

lg'k(xy)I exp [ie'k(xy)] is complex-valued, and Step 4 becomes

gk+l(xy) - lf(x,y)l exp [iekl(x~y)] = lf(x,y)l exp [ie (x,y)],

(7.4-5)

where lf(x,y)l is the known modulus of the complex-valued object and

ek is an estimate of the phase of the object. With this modulus
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constraint in the object domain, the error-reduction algorithm is

precisely the Gerchberg-Saxton algorithm. In this chapter we

consider only the problem of phase retrieval from a single intensity

measurement, the squared Fourier modulus.

A measure of the convergence of the algorithm to a solution (a

Fourier transform pair satisfying all the constraints in both

domains) is the normalized root-mean-squared-error (NRMS) metric in

the Fourier domain,

Z [IG(u,v)l - IF(u,v)l] 2  /2

EF U v 12  (7.4-6)
~ F(u,v)1

u v

or in the object domain,

F 1: lg (x,y)12-12
E LX,yS (7.4-7)0 = g(xY) 2

where y is defined as in Eq. (7.4-4). Unless otherwise noted, the

summations are performed over all points in image or Fourier space.

(ii) Proof of Convergence for the Error-Reduction Algorithm

It can be shown that the error-reduction algorithm "converges"

in the weak sense that the squared error cannot increase with an

increasing number of iterations [29]. This can be shown by

considering an unnormalized squared error at the kth iterations,

e2k = N-2  [1 Gk(u,v)l - I F(u,v)l 2 (7.4-8)
U V

= N-2  I Gk(uv) - G'(uv)I 2 (7.4-9)

u v
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which by Parseval's theorem is

2 *2e Fk . l gk(x,y) - g(x,y)( 2 . (7.4-10)

x y

Now compare this with the corresponding expression for the

object-domain error

2 eg (x,y)]2  (7.4-11)
eok =4x~)

(xy)Cy

E E lgkll(xly) - g (x,y) 2  (7.4-12)

x y

Both gk(x,y) and gk+l(x,y) by definition satisfy the

object-domain constraints. Also at any point (x,y), by definition
I

gk~l(xy) is the nearest value to gk(xy) that satisfies the

object-domain constraints. Therefore for all points,

lgk+l(x,y) - g1(xy)j < lgk(xy) - gl(x,y)l (7.4-13)

and therefore, from Eqs. (7.4-10) and (7.4-12),

2 <e (7.4-14)eok - e k"

Similarly, by Parseval's theorem

2 -2
eok = N I iGk+l(uv) - G (u,v)l (7.4-15)

U V

Since both Gk(U,V) and Gk+l (u,v) satisfy the Fourier-domain

constraint, having modulus I F(u,v)[, and by definition Gk+l(uv)

is the nearest value to Gk+l(uv) that satisfies the Fourier-domain

constraint, then

IGk+l(u,v) - G+,(uv)l < I k+l(uv) - G (u,v)I. (7.4-16)

Therefore from Eqs. (7.4-9) and (7.4-15),
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e2 2

F k+l < eok' (7.4-17)

and combining this with Eq. (7.4-14) gives the desired result

e2 <e2F,k+l - ok - ek (7.4-18)

That is, the error can only decrease, or at worst stay the same, at

each successive iteration of the error-reduction algorithm.

(iii) The Hybrid Input-Output Algorithm

Although it works well for the problem of phase retrieval from

two intensity measurements, the error-reduction algorithm usually

converges very slowly for the problem of phase retrieval from a

single intensity measurement being considered here [29]. Several

modifications of the iterative transform algorithm were made and

tested, and most of them converged faster than the error-reduction

algorithm [29]. To date, the most successful version is the hybrid

input-output algorithm, which replaces Step 4 of the algorithm by

[9, 29]

9 g(x'y) (x,y) Y y

gk+l(x~y) =tgk(x,y) - 8g (x,y), (x,y) e Y, (7.4-19)

where o is a constant feedback parameter. Values of B between 0.5

and 1.0 work well. When using the hybrid input-output algorithm,

gk(xy) is no longer an estimate of f(x,y) ; it is instead the

input function used to drive the output g'k(xy) [which is an

estimate of f(x,y)] to satisfy the constraints. Hence only the

object-domain error E is meaningful. When using the hybrid

input-output algorithm, even E does not always correlate with
image quality as well as one would like. For this reason one may

prefer to perform a number of cycles of iterations, where one cycle

consists of, say, 20 to 50 iterations of the hybrid input-output

algorithm followed by 5 to 10 iterations of the error-reduction

algorithm, and note E0 only at the end of a cycle.
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For a more complete description of the various versions of the

iterative algorithm, see Reference 29. Additional details concerning

the implementation of the algorithm are given in Section 6. A

description of the algorithm as it applies to a number of different

problems is given in Reference 39.

B Additional Aspects of the Iterative Transform Algorithm

In the past, some researchers have had varying success in

applying the iterative transform algorithm to phase retrieval from a

single intensity measurement. In this section, a number of

additional aspects of making the iterative algorithm work are given

as an aid to the practical implementation of the algorithm.

The data one must have available is an estimate, IF(u,v)l, of

the modulus, IF(u,v)l, of the Fourier transform of the object.

Although the iterative transform reconstruction algorithm is not

hypersensitive to noise, care must be taken to obtain the best

possible estimate of the Fourier modulus, which may involve

considerable compensation of the raw data [41], depending on how it

is collected. In many circumstances one can estimate the expected

value of the normalized root-mean-squared (NRMS) error of the data:

. E T ]2 1/2
[ I E [IF(u,v) -I F(uv)] 2

EF1 : I F(u,v)12 . (7.4-20)

As described later, this is useful for deciding when one is close

enough to a solution.

As the iterations progress, the NRMS error in the object domain,

E0, given by Eq. (7.4-7), should be computed. E is a measure
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of how close the current Fourier transform pair is to a solution.

Note that the denominator of Eq. (7.4-7) is a constant that need be

computed only once. When E0 goes significantly below E1 F1 one

has a solution consistent with the measured data and constraints to

within the limits of the error in the given data. It is unlikely

that E0 will ever go to zero because (1) diffraction by the

telescope aperture causes sidelobes in the image that extend beyond

the support of the object and (2) noise in IF(u,v)( almost always

results in a Fourier modulus that is inconsistent with either the

nonnegativity constraint or any reasonable support constraint.

Furthermore, in the presence of noise there will ordinarily exist an

output image g'(x,y) that is in better agreement with the noisy data

than the true image is. Consequently, for the case of noisy data, a
"solution" is not found until E0 is decreased to a level somewhat

less than E

For the astronomy problem one has a nonnegativity constraint in

the object domain. Furthermore, one can compute upper bounds on the

support of the object in any of several ways [25]. The simplest way

is to use a rectangle that is half the size, in each dimension, of

the smallest rectangle that encloses the autocorrelation. If the

actual support of the object is known a priori, then that should of

course be used. Any other types of a priori information should be

used during the iterations if available. The support constraint can

in general be defined by a binary mask which is unity within the

support and zero outside; then the computations of Eqs. (7.4-4),

(7.4-7) and (7.4-19) can be performed arithmetically without the use

of logic, which is advantageous when using array proressors.

There are many ways to pick an initial input to the algorithm.

Although claims have been made that the crude phase estimation method

described in Section 7.38(v) offers a superior starting point [34],

others have found that random numbers do as well or better [42].

Having an initial input close to the true solution reduces the number
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of iterations required and might help to avoid some stagnation

problems. If one of the reconstruction methods described in Section

7.5 has yielded an image, then that image would be an appropriate

starting input. One can either view the other reconstruction method

as a means for supplying starting inputs for the iterative transform

algorithm or view the iterative transform algorithm as a means for

"cleaning up" images reconstructed by the other method. If no other

initial estimate for the object is available, then one should use

random numbers in the object domain or for the Fourier phase, giving

an unbiased start to the algorithm. In the object domain, a

convenient starting guess, go(x), can be formed by filling the

support mask with random numbers. Another method [29] is to

threshold the autocorrelation (at say, 0.005 its maximum value),

demagnify that by a factor of two in each dimension by discarding

every other row and every other column, and finally fill the

resulting shape with random numbers. (Note that this shape does not

necessarily contain the support of the object [25].)

The algorithm can be made to converge faster and avoid a

stagnation problem [see Section 7.4C(iii)] if the support mask is

chosen to be somewhat smaller than the correct support for the first

cycle or two of iterations. Since it is the incorrect support, the

smaller support mask is inconsistent with Fourier modulus and

stagnation will eventually occur when it is used. Nevertheless, the

smaller support mask helps to force most of the energy of the output,

g'(x,y), into a confined region in fewer iterations. After this has

happened the support mask should be enlarged to the correct support

constraint for the object. This enlargement of the mask could be

done in more than one step if desired. When the algorithm has nearly

finished reconstructing the object, it is often beneficial to make

the support mask even larger than the correct support for the object.

This helps to ensure that no parts of the object are being

inadvertently truncated by the support constraint. The progression
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from a smaller support mask to a larger one also helps to avoid

having edges of the output image biased toward falling right at the

edges of the support mask.

Recall from Section 7.4A that the heart of the algorithm consists

of several cycles of iterations, where one cycle consists of KI

iterations of the hybrid input-output algorithm [Eqs. (7.4-1),

(7.4-2), (7.4-3) and (7.4-19)] followed by K2 iterations of the

error-reduction algorithm [Eqs. (7.4-1)-(7.4-4)]. Our experience

has shown that values of K1 from 20 to 100, of K2 from 5 to 10,

and of the feedback parameter s from 0.5 to 1.0 (use, say, 0.7) work

well.

The discrete Fourier transforms are computed using the Fast

Fourier Transform (FFT) algorithm. The sampling in the Fourier

domain should be fine enough to ensure that the object domain array

size is at least twice the width and height of the object itself,

which is equivalent to achieving the Nyquist sampling rate for
2IF(u,v)l

A straightforward method to evaluate Eq. (7.4-2) is to compute

the phase from the real and imaginary parts of Gk(uv), then

combine it with IF(u,v)l to form G'k(u,v), and finally compute the

real and imaginary parts of G'k(uv) (which are required by the

FFT) from its modulus and phase. Alternatively, one can employ

G (u,v) = Gk(uv) IF(u,v) I / [IGk(uv) + 6] (7.4-21)

where 6 is a very small number used to prevent overflow problems in

the rare event that IGk(uv)l = 0. (For some computers one can

use a = 0 with no ill effects.)

If all goes well, the iterative transform algorithm will converge

to a solution after a small number of cycles of iterations. If there

are multiple solutions, the iterative transform algorithm is capable
of finding any one of them, depending on the starting input [43, 44].
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Confidence that the solution is the one and only true solution can

be increased by performing two or more trials of the algorithm, each

time using different random numbers for the initial input.

In some cases the iterative transform algorithm will stagnate

before reaching a solution. The algorithm can be considered to have

stagnated if the error E is greater than E 1  and has failed to

decrease after three additional cycles. While some objects can be

reconstructed very easily, requiring only one or two cycles, other

more difficult objects can require many cycles comprising well over

a thousand iterations. Consequently, one should not too readily jump

to the conclusion that the algorithm has stagnated. It often occurs

that very slow progress is made for many iterations, but then the

algorithm suddenly finds its way and rapid progress is made in just

a few iterations.

If the iterative transform algorithm does stagnate, then one can

start over with a different set of random numbers for the initial

input; alternatively one can try other simple alterations of the

algorithm. One can use a larger value for a, say 1.2, causing larger

changes to be made; but this should not be carried out for too many

iterations since it causes the algorithm to become unstable. Use of

a different support constraint mask may also be helpful. For certain

special modes of stagnation there have been devised special methods

for overcoming the stagnation, as described below.

C Methods for Overcoming Stagnation

Three particular modes of stagnation have been identified: those

characterized by (1) simultaneous twin images, (2) stripes and

(3) truncated support. Methods have been devised to jump each of

these hurdles. They are briefly described in this section. further

details can be found in Reference 45. (See Chapter 8 for another
view of stagnation problems.)
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(i) Simultaneous Twin Images

Since both f(x,y) and its twin image f(-x,-y) have the same

Fourier modulus, the iterative transform algorithm is equally likely

to reconstruct either one. When the support of f(x,y) is symmetric,

the algorithm often outputs a partially reconstructed image having

features of both f(x,y) and f(-x,-y) as illustrated in Figure 7.4-2.

In many cases the algorithm stagnates with such an output image.

(It is not a solution because E > Ei,.) If the algorithm has

stagnated on an output image having a strong centro-symmetric

component, then one would suspect this mode of stagnation. A method

for circumventing this stagnation problem is to use a reduced-area

temporary support constraint for a few iterations. The temporary

support should be highly asymmetric and should include one or two

edges of the object's support but not the opposite edge. After a

few iterations with the reduced-area support constraint, the symmetry

in the output image may be sufficiently broken so that upon further

iterations using the correct support constraint the iterative

transform algorithm can converge to either f(x,y) or its twin.

For example, to overcome the simultaneous twin images stagnation

problem exhibited in Figure 7.4-2(c), a triangular support covering

the lower right half of the true square support was used for 10 error

reduction iterations. When further iterations of the algorithm were

performed with the correct square support, it converged to the

solution.

(ii) Stripes

The algorithm frequently stagnates in a mode in which the output

image is a faithful representation of the object but with a pattern

of stripes superimposed. This can be recognized by virtue of the

fact that the stripes extend (although with less contrast) beyond

the support of the object. The near-sinusoidal nature of the stripes

is an indication that the phase errors occur in a symmetric pair of
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fairly-well-defined areas in the Fourier domain. It has been

observed that, if the iterative transform algorithm is applied more

than once to the same Fourier modulus data but with different random

initial inputs, then the stripes (if there are any) of each of the

reconstructed images tend to have different frequencies and

orientations [46] which means that the errors occur in different

areas of the Fourier domain. Figures 7.4-3(a) to 7.4-3(d) show an

example of this.

One method for solving this stagnation problem is the voting

method [45]. The iterative transform algorithm is applied three

times, each time with a different random initial input to produce

three different striped images, such as shown in Figures 7.4-3(b) to

7.4-3(d). (If one of them has no stripes, then of course, the

problem is solved.) By cross-correlations the relative translations

and orientations of the three images are determined and corrected so

that they are made to be in perfect registration. The Fourier

transforms of the three images are compared. At each point the two

complex Fourier values that are closest are averaged and the third

(assumed to have a phase error) is discarded. The resulting

composite Fourier function is inverse transformed to produce the

corresponding output image. Then further iterations of the iterative

transform algorithm are performed. For example, Figure 7.4-3(e)

shows the output of the voting method applied to the images shown in

Figures 7.4-3(b) to 7.4-3(d), and Figure 7.4-3(f) shows the result

of further iterations.

A second method for overcoming stagnation with stripes is the

patching method [45]. It requires that only two striped images be

produced and made to be in registration. For each of these images

the area of the support of the object is zeroed out, leaving just

the stripes in the area outside the object's support. These stripes

are Fourier transformed, and the resulting Fourier modulus arrays

are used to determine what areas in the Fourier domains have phase
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errors associated with the stripes. It is assumed that those areas

are different for each of two striped images. A new composite

Fourier transform is set equal to the Fourier transform of the first

striped image where it is not affected by the phase errors and to

the Fourier transform of the second striped image where the first is

affected by the phase errors. Both methods of overcoming the problem

of stagnation with striped images have been shown to be effective

[45].

(iii) Truncated Support

Since f(x - xoy - yO) has the same Fourier modulus as

f(x,y), the location of the object's support is arbitrary.

Frequently the image partially reconstructed by the algorithm is not

in perfect registration with the support constraint. Then enforcing

the support constraint causes an inadvertent truncation of part of

the desired image, causing the algorithm to stagnate. In addition

to the enlarging support method described in Section 7.4B, a method

of combatting this stagnation problem is to dynamically translate

either the support constraint or the image.

The amount of translation to be used can be determined as

follows. Compute the total energy of the output image, g'k(xy),

(i.e., square and sum) over the area of the support constraint for

the current position of the support constraint and for the support

constraint translated by one or two pixels in every direction. The

support constraint should be translated to the position for which

the energy is maximized. Alternatively, compute the

cross-correlation of gk(xy) with the support mask, and

translate according to the peak of the cross-correlation. This can

be done occassionally or at every iteration. This method would be

particularly effective if, just prior to performing it, a support

constraint larger than the usual support were used for a few

iterations; that would give the truncated part of the image a chance

to establish itself.
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D Iterative Reconstruction Example

In this section, the results of a computer experiment, in which

stellar speckle interferometry [47] was realistically simulated

including the effects of atmospheric turbulence and photon noise --

and reconstruction from noisy Fourier modulus data by the iterative

transform algorithm, are shown [46]. (See Section 7.5A for a

description of stellar speckle interferometry.)

An undegraded object, a low-pass filtered, digitized photograph

of a satellite, shown in Figure 7.4-4(a), was convolved with 156

different point spread functions to produce 156 different blurred

images. Each of the point spread functions represented a different

realization of the effects of the turbulent atmosphere. The blurred

images were then subjected to a Poisson noise process to simulate

the effects of photon noise. For this example, there were

approximately 300,000 photons per degraded image (or on the order of

100 photons per pixel over the extent of the object), which is

realistic for objects of this type when imaged through a telescope

of diameter 1.6 m. Two of the resulting 156 degraded images are

shown in Figures 7.4-4(b) and 7 .4-4(c). The degraded images were

then processed by Labeyrie's [47] method as modified by Goodman and

Belsher [48]. The estimate of the modulus of the Fourier transform

of the object is given by [46]

MI Im(UV)2 - N 1/2

F(u,v) = W(u,v) m=1 (7.4-22)
] iTm(U,V)1

2

m=M+l 1

where Im(u,v) is the Fourier transform of the mth degraded image;

N is the total number of photons detected (it is subtracted inp
order to compensate for a noise bias term that arises in the power
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spectrum due to photon noise [48]); Tm(u,v) is the Fourier transform

of the mth point-spread function [to provide compensation for the

modulation transfer function (MTF) of the speckle interferometry

process]; and the weighting factor W(u,v) is the MTF due to the

telescope aperture. In practice, the denominator of this expression

would be obtained by making measurements on a reference star through

an atmosphere having the same satistics as that which blurred the

images or by using a model of the effects of atmospheric turbulence.

The term W(u,v) was included in order to restore the natural MTF due

to the telescope aperture which was removed by the denominator of

Eq. (7.4-22). Figure 7.4-4(d) shows the resulting Fourier modulus

estimate.

The object was reconstructed (or equivalently, the Fourier phase

was retrieved) using the hybrid input-output algorithm alternately

with the error-reduction algorithm. The result, shown in Figure

7.4-4(e), agrees very well with the original object shown in Figure

7.4-4(a), despite the noise present in the Fourier modulus data.

Good reconstructed images were also obtained when only one-tenth as

many photons were assumed to be available [46].

For this reconstruction example, Figure 7.4-5 shows E versus

the number of iterations and Figure 7.4-6 shows the output image at

various stages. The starting input used, shown in Figure 7.4-6(b)

was the randomized, demagnified autocorrelation described in Section

7.4B, using a threshold value of 0.0004 times the peak of the

autocorrelation. For the first 10 iterations, the error-reduction

algorithm was used and the mask defining the support constraint was

chosen to be the region over which the autocorrelation function,

spatially demagnified by a factor of 2, exceeded 0.0004 of its

maximum value, providing a fairly tight diameter constraint [it is

just the support of Figure 7.4-6(b), which is shown in Figure

7.4-6(a)]. For iterations 11 to 20, the error-reduction algorithm

was used, and the mask for these and the remaining iterations was
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chosen to be a square of length 64 pixels, which is larger than the

actual object extent of about 60 x 40 pixels (imbedded in an array

of 128 x 128 pixels). The error E decreased rapidly at first,

and the visual appearance of the output image improved substantially

from the first iteration, shown in Figure 7.4-6(c), to the fifth

iteration, shown in Figure 7.4-6(d). The error decreased suddenly

at the tenth iteration since some positive-valued points that were

inside the second mask but outside the first mask were no longer

counted as contributing to E . By the twentieth iteration, the

error-reduction algorithm was converging very slowly, and the output

image, shown in Figure 7.4-6(e), is only slightly improved over that

in Figure 7.4-6(d). For iterations 21 to 60, the hybrid input-output

algorithm, with s equal to 1, was used. At first E increased

sharply, although, as shown in Figure 7.4-6(f), the output image at

iteration 25 appeared no worse than at iteration 20; then Eo

decreased fairly rapidly until stagnating at Eo = 0.05 at about

iteration 55. Output images at iterations 35, 45, and 55 are shown

in Figures 7.4-6(g), (h) and (i), respectively. For iterations 61

to 70, the error-reduction algorithm was used, for which E dropped

suddenly from 0.05 to 0.02, although the visual appearance of the

reconstructed image remained the same as for iteration number 55.

This final value of E is somewhat less than 0.03, the

normalized rms error of the Fourier modulus estimate itself.

Reconstruction experiments do not always proceed as smoothly as

the one described above. When stagnation occurs, then the methods

described in Section 7.4B and 7.4C should be employed.

7.5 Solutions Specific to Measurement Techniques

We have assumed so far in this chapter that only the modulus of

the Fourier transform, IF(u,v)f, of the object intensity, f(x,y), is

known and have combined this data with the a priori knowledge that
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the object is nonnegative and of finite extent to achieve a

reconstruction of the object. Astronomical observing techniques

based on either speckle (image plane) or Michelson (pupil plane)

interferometry can yield data in addition to the modulus of the

Fourier transform: for example, speckle interferometry gives, in

addition to a diffraction-limited estimate of the modulus, a low

resolution image of the object, i.e., an estimate of both the modulus

and phase of the transform at low spatial frequencies. This

additional data may in some cases be sufficient to determine the

object intensity without any ambiguity. Since the different methods

are specific to the observing technique, they are described

separately under the headings of Speckle Interferometry and Michelson

Interferometry.

A. Object Recovery from Speckle Interferometry Data

(i) Basic Speckle Technique

Speckle interferometry was invented by A. Labeyrie [47] in 1970

as a means of obtaining diffraction-limited resolution (but not

images) from large telescopes, despite the presence of atmospheric

turbulence or "seeing". The method is illustrated in Figure 7.5-1

for an unresolved star, binary stars of two separations, and a

resolved star. A large number of short-exposure (-l0 ms) photographs

are taken, each through a different realization of the atmosphere,

typical examples being shown in row B (see also Figure 7.5-2). For

a binary star, each component produces an identical speckle pattern

and a "double-speckle" effect may be visible in each short-exposure

image in favorable circumstances. The optical diffraction pattern,

or squared modulus of the Fourier transform, of each photograph is

shown in row C -- the signal-to-noise ratio is low for a single

record and may be improved by adding many such diffraction patterns

(row D). The unresolved object has a diffraction halo of relatively

large spatial extent, the binaries give fringes of period inversely
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proportional to their separation, and the resolved object gives a

diffraction halo whose diameter is inversely proportional to the

diameter of the object. By taking a further Fourier transform of

each ensemble-averaged diffraction pattern, we obtain the average

spatial autocorrelation of the diffraction-limited images of each

object (row E).

In mathematical terms, one estimates either the average spatial

autocorrelation, <g(x,y) *g(x,y)>, or the power+ spectrum

<IG(u,v)2>, of the image intensity g(x,y), where < > denotes the

ensemble average, from a finite number of frames. It can be shown

that the image power spectrum is related to that of the object,

JF(u,v)l2 , through the speckle transfer function <IT(u,v)H2>:

<IG(u,v) 2> = IF(u,v)12 <IT(u,v)1 2>, (7.5-1)

where

<IT(u,v)j 2> <T(u,v)>l2 + TD(uv)/Ns , (7.5-2)

and all spatial frequencies are referred to those of the image

(formed by a telescope of focal length z using light of wavelength

x). In Eq. (7.5-2), <T(u,v)> is the average (seeing-limited)

transfer function, TD(uv) is the diffraction-limited transfer

function of the telescope and Ns is the average number of speckles

per frame [=2.3(D/r ) 2], where r0 is the atmospheric seeing
parameter).

The key feature of speckle interferometry is that the speckle

transfer function <IT(u,v) 2> is nonzero up to the diffraction

'Strictly speaking this should be called the average energy
spectrum [3, p. 260].
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limit of the telescope, as given by Eq. (7.5-2), allowing the object
2

power spectrum F(u,v)I , or equIvalently the object

autocorrelation f(x,y) f(x,y) , to be estimated up to the

diffraction limit of the telescope. Note that the basic technique

does not give the object intensity itself: to address this problem,

one must use one of the phase retrieval algorithms described earlier

or one of the speckle imaging techniques described below.

(ii) Shift-and-Add Method

The first speckle imaging technique to be suggested used the

notion that the individual speckles in a short-exposure image

resemble diffraction-limited images of the object. Figure 7.5-2

compares short-exposure images of a point source and a resolvable

star and there is a clear qualitative difference between the speckle

structure in the two cases. By averaging the centroided versions of

selected bright speckles, Lynds et al [49] were able to reconstruct

a map of the red giant a-Orionis. The procedure was made a little

more systematic and generalized by Bates and Cady [50], who suggested

that the brightest speckles in the image be shifted to the origin

and the entire images added (hence "shift-and-add") allowing for

larger images to be formed.

There are two problems with this method that make it unlikely to

be of practical significance for most objects. First, to be able to

implement the method, it is necessary to identify individual speckles

and this can only be done if there are more than approximately 105

detected photons per frame, implying an object brighter than about

5th magnitude in the visible. Second, each speckle is obviously not

an image of the object and there is no linear transfer function for

this technique, making it difficult to reconstruct reliable

quantitative object maps. The Bates and Cady extension can give

good results if the image contains a very bright unresolved

component [51].
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(iii) Cross-Power Spectrum Method

This method, first suggested by Knox and Thompson [52], makes

use of the fact the phase difference between two values of F(u,v),

separated by (Au,Av) < ro0Ixz in spatial frequency, is present in

the original speckle data g(x,y) and can be extracted by computing

the cross-power spectrum <G(u,v)G*(u + au,v + av)>. A

straightforward analysis shows that

phase {<G(u,v)G*(u + au, v + Av)>}

= phase {F(u,v)) - phase {F(u + Au, v + Av)}

+ phase {<T(u,v)T*(u + au, v + Av)>} . (7.5-3)

The phase of a complex quantity only has meaning if its modulus is

nonzero, so that from Eq. (7.5-3) there are two conditions to be met

if phase differences of F(u,v) are to be computed from the phase of

the cross-spectrum:

(i) <T(u,v)T*(u + Au, v + Av)>l 4 0,

(ii) phase {<T(u,v)T*(u + Au, v + Av)>} either known or zero.

If we assume that the complex amplitude in the telescope pupil

has complex Gaussian statistics and that its autocorrelation function

has a Gaussian shape, i.e., the "seeing" transfer function TS(u,v)

is Gaussian, then it can be shown [3, p. 303] that

<T(u,v)T*(u + Au, v + Av)> = <IT(u,v)j 2> ITs(Au/2, v/2)1 2 . (7.5-4)

That is, the Knox-Thompson transfer function is simply the product

of the normal speckle transfer function (Eq. 7.5-2) at (u,v) and the

squared modulus of the "seeing" transfer function at (au/2,av/2).

It follows that the modulus of the Knox-Thompson transfer function

is nonzero up to the diffraction limit of the telescope provided that

au/2 and Av/2 are less than (r0 /xz), the width of the "seeing"

transfer function. It also follows that
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phase {<T(u,v)T*(u + au, v + av)>} = 0.

The problem of finding the phase of F(u,v) given the phase

differences for frequencies separated by (Au,av) is identical to that

of finding a wavefront from sheared interferograms [53]. Simple

"bootstrapping" of the phase differences, starting at the origin of

the spatial frequency plane, leads to cumulative errors at higher

frequencies and in two dimensions yields phase values at a given

frequency that depend on the path taken in the frequency plane:

averaging of these values is not the best way to deal with this

problem. A least-squares solution is straightforward to implement

using an iterative technique to solve the usual matrix equation (the

matrix that relates the phase differences to the phase values is

sparse) [54].

The assumptions leading to Eq. (7.5-4) are not particularly

realistic and it remains to be seen how sensitive this technique is

to the atmospheric statistics.

(iv) Triple Correlation Method

The average triple correlation <g (3)xi,2)> of the image

intensity g(x), or equivalently its Fourier transform, the bispectrum
(3)<G ( i,2)>, contains information on the phase of G(u) and

hence on the phase of the object transform [55, 56]. Here we use

the notation x = (x,y) and u = (u,v). The triple correlation and

bispectrum are, for real function g(x), defined by:

g( 3 )(1i,2 ) =f1 g(x) g(x + xl) g(x + 2) dx (7.5-5)

and

G (3) 1,12) = G(u,) G(12) G(-u 1 -2 )  . (7.5-6)

The average bispectrum of the image is related to that of the object

through a bispectrum transfer function <T (3)(ul,12)> ,

<G (3) (u u.)> F F(3)(u1,_ 2 )  < T (3)(u,55 (7.5-7)
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If it is assumed that complex amplitude in the telescope pupil

has Gaussian statistics, then it can be shown [55] that the

bispectrum transfer function is real and nonzero over the

diffraction-limited portion of the ( 1,2) volume: it follows

that the phase of the image bispectrum equals that of the object

bispectrum.

To see how the phase of the object spectrum (which is Hermitian)

can be calculated recursively from that of the object bispectrum,

consider a one-dimensional sampled bispectrum F(
3 )

Z, m.

F ,(3)2m = F Z Fm FZm .  (7.5-8)

Denoting the phase of the object spectrum by qn and that of the

bispectrum by s2gm, the phase factors satisfy the equation

exp [iIn] = exp [i( m + ' n-m - Bn-m,m)] (7.5-9)

Where the substitution n = Z + m has been made. Note that both o

and 0 1 may be set equal to zero as the object is real and its

absolute position is not of interest.

Now consider Eq. (7.5-9) with m = 1 and n = 2, 3, 4,...:

exp (ion] = exp [i(ol + n-l - On-1l,l)]' (l = 0). (7.5-10)

Clearly, p2, p3 , . . . can be found by simple recursion with

n = 2, 3 . . . . In fact, the process can be repeated for different

values of m, to yield a more accurate estimate of the phase at each

spatial frequency. The method is in some ways similar to, but more

general than, the cross-power spectrum technique described in (iii).

The triple correlation method is illustrated in Figure 7.5-3 for

a one-dimensional projection of the double star w-Leonis. For the

more interesting case of two-dimensional objects, the reconstruction

of the object spectrum from the bispectrum is computationally quite

reasonable -- the problem lies in computing the average bispectrum,
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which is a four-dimensional function. Nevertheless, the triple

correlation method appears to be the most promising technique of

speckle imaging at the present time.

(v) Exponential Filter Method

For discrete objects, the object spectrum can be written as a

polynomial or z-transform, as discussed in Chapter 6.1. For

modulus-only reconstruction in one dimension, the possibility of

ambiguities arises because the zeros of the power spectrum of the

object include both the zeros of the original object and their

inverses: in the one-dimensional case it is not in general possible

to distinguish the correct zeros from their inverses, given only the

Fourier modulus. The cross-spectrum method eliminates this ambiguity

by rotating the "inverse" zeros by a known amount [57], thus enabling

them to be distinguished from the correct ones even in the

one-dimensional case. The triple correlation method also allows the

zeros of the object spectrum to be identified correctly from the

zeros of the triple correlation [56]. The exponential filter method

provides a third way of distinguishing the correct zeros from their

inverses: in this case the correct zeros are moved out radially in

the complex plane by a known amount.

In this method, one records the instantaneous image intensity

g(x,y) in the usual way and computes the average power spectrum

<IG(u,v) 2>. A second power spectrum, <IG'(u,v)12> of

g(x,y) p(x,y), where p(x,y) is a special modifying function, is also

computed. Walker [58] showed that if the modifying function has the

property,

p(xl + x2 ' YI + Y2) = P(Xl'yl) p(x2 'y2 ) '

then

<IG'(u,v) 2> I IF'(u,v)l 2  <IT'(u,v) 2> (7.5-11)
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where

F'(u,v) - F(u,v) * P(u,v)

and <IT'(u,v)l 2> is a transfer function that can be measured by

observing a point source. The exponential, p(x,y) = exp (-21ax),

has the required property. From the data we have thus extracted the

power spectrum of the object, I F(u,v)2, and that of the

exponentially-filtered object, IF'(u,v)1 2 : these together, in

principle, contain sufficient information to reconstruct the object

intensity.

In practice, in the two-dimensional case, an iterative algorithm

similar to that described in Section 7.4 is used to obtain the object

intensity f(x,y) from these two power spectra, which are both used

alternately as Fourier constraints [59]. Figure 7.5-4 shows an

example of reconstructions obtained in a computer simulation using

this algorithm.

(vi) Phase Averaging Method

The instantaneous image intensity g(x,y) is related to the object

intensity f(x,y) by the usual convolution formula, which in Fourier

space becomes a product:

G(u,v) = F(u,v) T(u,v) , (7.5-12)

where T(u,v) is the instantaneous transfer function of the

atmosphere/telescope combination. Taking the ensemble average of

the logarithm of Eq. (7.5-12) and equating imaginary parts, we obtain

<phase {G(u,v)}> = phase {F(u,v)} + <phase {T(u,v)}> + 2wq, (7.5-13)

where the phase is the unwrapped value in the interval -- to +- and

q is an integer. McGlamery [60] suggested that if <phase T(u,v) >

is known (or zero), then the phase of the object transform could be

found from the average phase of the image transform. Using the

Central Limit Theorem, it is possible to show that, for spatial
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frequencies r0/xz < (u,v) < (D - r0 )/xz, the quantity T(u,v) is

a circular complex Gaussian process, with the result that

<phase {T(u,v)}> = O.

The real problem with this phase averaging method is

determining, using continuity of G(u,v), the unwrapped phase (the

phase in the interval -ooto +x) from the phase of G(u,v), which is

necessarily in the interval -w to +r. This unwrapping has to be

done before the averaging process. When the modulus IG(u,v)l is

small, the rms absolute error a in the unwrapped phase is given

approximately by,

1 :(7.5-14)

2 'IG(u,v) l

where N is the average number of detected photons per frame and

G(u,v) is normalized to unity at zero spatial frequency. In addition

to having a low average value of its modulus [because of the form of

the speckle transfer function, Eq. (7.5-2)], the continuous function

G(u,v), since it is the Fourier transform of a speckle pattern, also

contains many points whose modulus is zero, which can be expected to

cause problems in phase unwrapping algorithms [61].

Mertz [62] has suggested that it should be possible to use

continuity in time, as well as spatial frequency, to help unwrap the

phase and such a proposal may be easy to implement using the

time-ordered photon event detectors that are becoming available.

(vii) Non-Redundant Aperture Methods

As is well known, the Fourier transform of any intensity point

spread function is equal to the autocorrelation of the complex

amplitude distribution over the pupil. A given spatial frequency

component is therefore the sum (or integral) of products of values

of the complex amplitude at all combinations of two points in the

pupil separated by a fixed amount. If a special mask of

sub-apertures is used in the pupil, such that no vector separation
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occurs more than once (i.e., a non-redundant array of sub-apertures),

then each spatial frequency component of the point spread function

equals the product of two particular values of the complex amplitude

in the pupil and hence yields the phase difference between the

wavefront at these two points. Thus, the Fourier transform of the

image intensity, when the imaging aperture is a non-redundant array

of sub-apertures, has a simple, direct interpretation in terms of

the wavefront in the telescope aperture, and this has been the basis

of several possible methods of diffraction-limited imaging from

(speckle-free) image plane data. However, in all cases each frame

of data has to have an excellent signal-to-noise ratio so that an

accurate phase difference can be found.

Three methods of utilizing short-exposure images taken through

non-redundant apertures have been put forward. Rhodes and Goodman

[63] suggested using two or more masks to form two or more

short-exposure images with the same atmospheric distortion -- this

procedure could be used to eliminate telescope aberrations as well.

Brown [64] suggested that even a single image from a single mask

could be processed using a suitable "sharpness" criterion for the

reconstructed object. Finally, there is the possibility of phase

averaging analogous to that described in Section (vi) above.

A variation on the use of a non-redundant aperture has been

proposed by Greenaway [65]. The basic idea is to reconfigure a

redundant aperture into a nearly non-redundant one using a suitable

interferometer and then applying phase closure techniques. This

allows the full aperture to be utilized, but it is not clear how one

constructs the optical system required to reconfigure the aperture.

(viii) Phase Diversity Method

As was seen in Section 7.5A(v), the availability of more than

one type of measurement opens up additional possibilities for

reconstructing an image. A class of such techniques are those that

60



employ phase diversity in the pupil of the telescope [66]. Two

images are collected simultaneously: the usual aberrated image with

optical transfer function T(u,v) and Fourier transform

G(u,v) = F(u,v) T(u,v), (7.5-15)

and a "phase-diversity" image with optical transfer function

Td(uv) and Fourier transform

Gd(uv) = F(u,v) Td(uv). (7.5-16)

The phase-diversity transfer function, T includes a known,

purposely-induced phase aberration in addition to the same unknown

atmospherically-induced aberrations included in T(u,v). For this

problem, both the object and the atmospheric aberrations are unknown.

To solve this problem, Gonsalves [66] introduced the error metric

E = ff [IG(u,v) - F(u,v)T(u,v)12 + IG(UV) -du dv

(7.5-17)

(where X is an estimate of X). By the method of calculus of

variations, the function F(u,v) that minimizes E can be determined

and inserted in Eq. (7.5-17) to yield an expression for the error

metric that is independent of F(u,v):

E WuV)T d(UV) - Gd(u,v)T(u,v)I 2

~(uv)d~~v - 'S v) 2E ff IT(u,v) 2 jTd(uv) 2 du dv

(7.5-18)

This error metric depends only on the estimates of the transfer

functions which in turn depend only on the estimate of the phase

aberrations. One can iteratively search for the estimate of the

phase aberrations (usually parameterized by, say, the coefficients

of a Zernike polynomial expansion) that minimize E, by the

Fletcher-Powell gradient search method for example. Having found

the aberrations, T(u,v) can be computed and F(u,v) can be determined

from Eq. (7.5-15) or, better, by Wiener filtering.
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A problem with this method is that, employing only a single pair

of frames of data, it works well only for bright objects.

B Object Recovery from Michelson Interferometry Data

(i) Pupil Plane Interferometry

In pupil plane interferometry, the spatial coherence function of

starlight is measured by simple two-beam interference either directly

in the pupil of a large telescope or using two (or more) separated

telescopes in a long baseline arrangement.

The spatial coherence function, C(g,An), is defined by

C(ACAn) <V(Fnt) V*(C + A&, n + Ant)> , (7.5-19)

where V( ,n,t) is the analytic signal representation of the field in

the (C,n) plane. The real part of C(g,An) can be measured by

interfering portions of the wavefront located at (-,n) and

(C + A ,n + An) and measuring the resultant time-average+

intensity:

<Inlt) + + ,n + &n,t)I 2>

= l( ,n) + I( + a&, n + An) + 2 Re[C(A ,An)].

(7.5-20)

The imaginary part is found by retarding one wavefront by w/2 prior

to interference. In practice, the two wavefronts are either

combined through a beamsplitter arrangement to yield both the real

and imaginary parts of C(A ,An) simultaneously, or at an angle so

that the fringe positions gives the phase (if it is possible to

follow individual fringes).

+Or ensemble average, the distinction is unimportant for
ergodic light sources such as stars.
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According to the van-Cittert-Zernike theorem, the coherence

function C(& ,An) is proportional to the Fourier transform F(u,v) of

the object intensity f(x,y): if we take the object coordinates

referred to image space, the spatial frequencies (u,v) of the object

transform are related to separation in the pupil plane (a ,an) given

by

u = AUXz, v = An/Xz,

where z is the focal length of the telescope+.

Although historically this method was first proposed and

demonstrated by Fizeau and Stephan, it is normally known as Michelson

interferometry, following Michelson's measurements of the satellites

of Jupiter and the red giant, a-Orionis, the latter using a specially

constructed two-beam interferometer mounted on the 100-inch Mt.

Wilson telescope. The main attraction of the implementation of

Michelson interferometry using two small telescopes is that the

baseline, which in terms of resolution is equivalent to the diameter

of a single aperture telescope, can potentially be very large,

perhaps 1 km or more. It is also relatively easily adapted to use

in space. The major disadvantages of the two-telescope approach are

the poor coverage of the (u,v) plane and the lack of reliable phase

information.

(ii) Wavefront Rotational Shearing Methods

This method is equivalent to an array of Michelson

interferometers working in parallel and is an alternative to speckle

(image plane) methods for single large telescopes. Mertz [67] was

"+It is customary in astronomy to use angular frequencies ae/x
and An/N.
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the first to point out that a rotational shearing interferometer can

be used to measure the two-dimensional Fourier transform of any

incoherent source distribution with a variable magnification that

depends on the amount of rotational shear. This interferometer has

been adapted by Roddier [68] for astronomical observation.

In a rotational shearing interferometer, the time-varying complex

amplitude in the telescope pupil, Vl( ,n,t), is divided by a

beamsplitter into two beams, one of which is rotated by an angle e

with respect to the other before recombination at the same or another

beamsplitter. Variable magnification is achieved by varying e, but

to see the principle of operation we shall let e = 1800. The output

intensity I2(Cn) of the interferometer in this case is

I2 (,fn) -<V 1(,n,t) + Vl(-F,-n,t)I 2>

= 2 ll(C,n) + 2 Re[C(2 ,2n)] (7.5-21)

for a uniform pupil intensity. The imaginary part of the spatial

coherence could be found separately by phase-shifting one beam prior

to recombination or, more simply, by adding tilt fringes to form a

side-band hologram [68].

In applying this method to imaging through turbulence, it is

important to note that the fringe visibility, from which the spatial

coherence is found, remains constant from frame-to-frame and the

turbulence affects only the detailed form of the fringes. The major

disadvantage of the technique is that each frame must have sufficient

signal-to-noise ratio to enable the fringe visibility to be

determined and this requires that the individual fringes are clearly

defined. This is a significant drawback despite the fact that at

high light levels pupil plane interferometers have a higher

signal-to-noise ratio than the image plane technique of speckle

interferometry.
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(iii) Phase Closure

Phase retrieval in the two (or more) telescope arrangement

originally proposed by Michelson is very much more complicated than

for the single aperture case, as there are almost certainly

discontinuities of the measurements in the pupil plane because the

full aperture is sparsely filled. One approach is to combine

simultaneously the outputs from a non-redundant coherent array and

use the image plane (speckle) data as described in Section

7.5A(viii). Another technique, originally suggested and used in

radio-astronomy [69], is to form simultaneously all possible pair

correlations from N apertures using the Michelson technique to

determine the Fourier phase, and then use the principle of phase

closure to eliminate some or (given enough redundant measurements)

all the (unknown) atmospheric phase disturbances.

Consider any three apertures and let the (constant) phase across

each one due to atmospheric turbulence or other phase errors be a,,

(2 and 03 The measurements of instantaneous fringe positions

for each aperture pair yields phase differences s12, 823 and

813 which are related to the true object phase differences p12 '

23 and 0 13 by

B12 =t 12 + l - 2

023 =23 + a2 - a3

813 = '13 + Ol - 03"

By forming the sum

B12 + 823 - 813 = '12 + '23 - '13

the atmospheric phase terms are eliminated. If one assumes that two

object phases are known, then the third can be calculated. The
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arbitrary choice of the first two phases simply affects the position

of the reconstructed object on the sky and does not affect its

morphology. Repeating this with a carefully chosen set of aperture

spacings (which include redundant spacings) it is possible to

determine the Fourier phase of the object at all spatial frequencies

covered by the array. Even if sufficient redundant spacings are not

present to ensure a complete reconstruction, the number of unknown

phases is greatly reduced by the phase closure method.

7.6 CONCLUSIONS

The methods for reconstructing stellar objects f(x, y) from

interferometric data in optical astronomy fall into two classes:

those that require only the Fourier modulus IF(u,v) and those that

use the additional, but limited, phase data that is available in

certain observational techniques.

It appears that object reconstruction from the Fourier modulus

alone is usually unique, although it is not difficult to construct

specific counterexamples that do not yield a unique solution. The

main problem is how to find this solution. The iterative transform

algorithm described in Section 7.4 is the most computationally

efficient and successful algorithm to date. Using array processors

of modest cost, a complete iteration on a 128 x 128 data set need

only take about 1 second and convergence to a solution can be

obtained in a few minutes if stagnation problems are avoided (see

Section 7.4C).

Particular observing techniques, such as speckle interferometry,

can provide not only the Fourier modulus but also Fourier phase

information. Clearly, if this additional information is available,

it should be used in the reconstruction process. The most promising

techniques for doing this at the moment are the cross-spectrum,

triple correlation and exponential filter methods described in

Sections 7.5A(iii)-(v) respectively.
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The planned construction of several giant 10-20 m diameter

ground-based optical telescopes in the near future should provide

the stimulation for further advances in phase retrieval and object

reconstruction in astronomy.
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Figure 7.4-1 -Block diagram of the iterative transform algorithm.
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Figure 7.4-2 - Example of stagnation with simultaneous twin images.

(a) Object f(x,y); (b) twin image f(-x,-y); (c) stagnated output

image partially reconstructed from Fourier modulus, having features

of both twins.
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Figure 7.4-3 - Example of stagnation with stripes, and overcoming it

by the voting method. (a) object; (b), (c), (d): images partially

reconstructed by the iterative transform algorithm each from a

different random starting input and each having a different set of

stripes superimposed on an otherwise good-quality image; (e) output

of the voting method; (f) output image after further iterations.
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Figure 7.4-4 Image reconstruction example. (a)Undegraded object;
(b), (c) examples of degraded images simulated to include the effects
of atmospheric turbulence and photon noise; (d) Fourier modulus
estimate computed from the degraded images; (e) image reconstructed

using the iterative transform algorithm.
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Figure 7.4-5 -Normalized root-mean-squared (NRMS) error metric,
E9versus iteration number for the example.
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Figure 7.4-6 - Details of the image reconstruction example: (a) mask

array defining the support constraint for the first 10 iterations;

(b) initial input to the iterative transform algorithm; (c)-(i)

output images -- number of iterations: (c) 1, (d) 5, (e) 20, (f) 25,

(g) 35, (h) 45, (i) 55.

80



Figure 7.5-1 - Laboratory simulation showing the principles of
stellar speckle interferometry. A - objects; B - typical short
exposure photographs; C - diffraction patterns of row B; D - sum of
20 diffraction patterns; E - diffraction patterns of row D (not at
the same scale as row A). (Courtesy of A. Labeyrie, CERGA).
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Fiqure 7.5-2- Short exposure photographs of an unresolved point

source (upper row) and a resolved star, a-Orionis (lower row), taken

on a 4 m telescope. The exposure time and filter bandwidth are

10-2 s and 10 nm respectively. (Courtesy of B.L. Morgan and R.J.

Scaddan, Imperial College, London).
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(a)

(b) (c) (d)

_ _ ,., '(f)

(e)

Figure 7.5-3 - Illustration of the triple correlation method in one

dimension on the double star w-Leonis. (a) typical short exposure

speckle photograph; (b) bispectrum transfer function; (c) average

bispectrum of speckle image calculated from 300 exposures; (d) object

bispectrum found from (b) and (c); (e) reconstructed image; (f) scan

through reconstructed image. (Courtesy of A.W. Lohmann and G.

Weigelt, University of Erlangen).
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Reconstruction of objects having latent reference points

J. R. Fienup
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A simple recursive algorithm is proposed for reconstructing certain classes of two-dimensional objects from their
autocorrelation functions (or equivalently from the modulus of their Fourier transforms-the phase-retrieval prob-
lem). The solution is shown to be unique in some cases. The objects contain reference points not satisfying the
holography condition but satisfying weaker conditions. Included are objects described by Fiddy et al. [Opt. Lett.
8, 96 (1983)1 satisfying Eisenstein's thorem.

INTRODUCTION ing), nonnegativity and limited spatial extent," (in astrono-

In a number of disciplines. including astronomy, x-ray crys- my). atomic models" (in x-ray crystallography), and objects

tallography, electron microscopy, and wave-front sensing, one consisting of collections of points having nonredundant

encounters the phase-retrieval problem. One wishes to spacings. ph
reconstruct(m,Here it is pertinent to review the case of holography.
reonuls of ), Four anstfon, ferom h Suppose that f(m, n) consists of an object of interest, g(m, n),
modulus of its Fourier transform, where plus an unresolved (delta-function-like) point, referred to as

F(p, q) IF(p, q)Iexp[i# (p, q)] = if[f(m, n)] the reference point, i.e.,

M-1 N-i f(m,n)ffiAb(m-mo, n-no)+g(m,n), (4)
= Y_ f(m,n)exp[-i2ir(mp/M+nq/N)], (1)

m-0 n-0 where r(m, n) is a two-dimensional (2-D) Kronecker delta

where m, p = 0, 1...M - land n, q = 0, 1. N - 1. The function. Then the autocorrelation can be written as the sum

discrete transform is employed here since in practice one deals of four terms,
with sampled data in a computer. The problem of recon- r(m, n) = IA26(m, n) + r,,(m, n) + Ag*(m, - m, nf - n)
structing the object from its Fourier modulus is equivalent to
reconstructing the Fourier phase, #(p, q), from the Fourier

modulus; since once one has the phase as well as the modulus, the final term of which is the cross-correlation of the reference
one can easily compute f(m, n) by the inverse (discrete) point with the object of interest and is simply proportional to
Fourier transform. r1(m, n), the (aperiodic) autocorrelation a translate of the object of interest. If the distance from the
of f(m, n), is given by' reference point to the object of interest exceeds the diameter

M-I N-1 of the object of interest, then the fourth term in Eq. (5) is
rf(m,n) = YE f(j,k)f*(j - m,k - n) (2) nonoverlappingwith theotherterms, and theobject of interest

J-0 k-0 is reconstructed by simple inspection of the autocorrelation.
Then the holography condition is satisfied.2. If the ampli-

ffi- l [F(p, q) 2 , 3) tude and position of the reference point are unknown (except

where the asterisk denotes complex conjugate. Notethatthe that the reference point satisfies the holography condition),
autocorrelation is Hermitian: rf(-m, -n) =rf*(m, n). Note then the object can be reconstructed only to within a complex
also that in order to avoid aliasing during the computation of factor A* and to within a translation, and there woule be a
I F(p, q)1 2, it is necessary to havef(m, n) = 0 for M/2 < m < twofold ambiguity as to whether the object is given by the
M - 1 and for N/2 < n < N - 1; this will be assumed fourth term or the third term (the conjugate image) o' Eq.
throughout this paper. Then there is no difference between (5).
the periodic (cyclic) and aperiodic autocorrelation. (For x-ray In this paper we describe an algorithm for reconstructing
crystallography this is usually not the case, and the results of certain objects having reference points that do not satisty the
this paper do not apply.) Since the autocorrelation function holography condition. For these cases the reference points
is easily computed from the Fourier modulus by Eq. (3), the may be referred to as latent reference points, because t hey do
phase-retrieval problem is equivalent to reconstructing an not immediately yield the object as would a holoraphic ref-
object from its autocorrelation function. erence point: rather, a degree of development is required he

Several phase-retrieval algorithms have been proposed, all fore their usefulness emerges.
of them requiring some additional measurements or con- In Section 2 the question of the uniqueness ofthe solution
straints on the solution. Examples include a reference point is reviewed. In Section :3 the new reconstruction algirithm
at least one object diameter from the object2 (giving rise to the is described as it is applied to three different classes of objects.
holography condition:), a second intensity measurement in Additional comments on the reconstruiction algorithm are
another plane 4.5 (in electron microscopy or wave-front sens- included in Section 4.

00:30-3941/8:/11 1421-06$01.0n c 1983 Optical Society ot America
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2. UNIQUENESS OF THE SOLUTION contains five columns and four rows of points. The object

When one measures only the Fourier modulus, then the must also be nonzero both at point A and at point B in the_ . henone easresonlytheFourer oduus, henthe lower left corner of the rectangle. Points A and B are referred

uniqueness of the solution is a central question. One of course to as the reference p oints and a e hofog-
alashstetood(8*rttdo ojgt mg) to as the reference points, and they do not satisfy the holog-
always has the twofold (180 rotated or conjugate image) raphy condition. If these conditions are satisfied, then the
ambiguity since .7[f(m, n)of = [f*(l-m, -nf)II; and trans- Fourier transform of the object satisfies Eisenstein's theorem,lations of f(m, n) and the multiplication of f(m, n) by a con- making it an irreducible 2-D polynomial and guaranteeing

stant phase factor exp(i0) (where (0 is a real constant) also have tat t s n todthe phae netial p roblem in

no effect on IF(p, q)1. If these are the only ambiguities. then that the solution to the phase retrieval problem is unique.
we cnsier he oluionof he paseretievl poblm t be They demonstrated the power of these conditions by recon-

we consider the solution of the phase-retrieval problem to struction experiments using the input-output iterative Fou-
Brunique. rier-transform algorithm.. 7 First, they performed a recon-Bruck and Sodin"1 considered objects consisting of a rec- struction experiment on the Fourier modulus of a particular

tangular grid of delta functions having various complex am- struct expeimnt ave rier mont of a iter

plitudes (or equivalently, a 2-D sequence), which have Fourier object that did not have a reference point A. After 250 iter-
ptansor equiat l an b-seese po mia. he rer ations, a poor reconstruction resulted. But when a new objecttransforms that can be expressed as polynomials. These are

" was formed by adding a reference point A off its corner making
the types of objects assumed by Eqs. (1) and (2), and we refer it satisfy the conditions, then a good reconstruction was oh-
to such objects as sampled objects. They showed that, for tained after only 20 iterations.' 3 Note that this does not prove
sampled objects, a lack of uniqueness of the solution to the that the original object (without the point A) was nonunique:
phase-retrieval problem is equivalent to the factorability of the failure of the iterative reconstruction algorithm may only
the polynomial, and therefore one-dimensional (1 -D) objects be an indication of local minima in the error function. In fact,
of length L have a 2L-1-fold ambiguity." This result corre- when the reference point A had a small value, a poor recon-
sponds to the analogous theory for 1-D continuous functions.1r  struction was obtained in spite of the fact that irreducibility

On the other hand, polynomials of two (or more) variables are (and uniqueness) was ensured. Only when a large value for
known to be only rarely factorable (i.e., they are usually irre- A was used did the reconstruction become easier.t: Appar-
ducible). Consequently, for 2-D sampled objects the solution ently the use of a large enough value for A also ensures that
to the phase-retrieval problem is usually unique. An analo- there are no local minima.
gous theory for 2-D continuous functions is not yet avail-
able.

3. NEW RECONSTRUCTION ALGORITHM
Uniqueness Condition Due to Eisenstein's Theorem For certain classes of sampled objects having reference points
Although most 2-D sampled objects are, as discussed above, not satisfying the holography condition, we present a new
uniquely related to the modulus of their Fourier transforms, reconstruction algorithm having a fixed number of steps.
it is of interest to know conditions that ensure uniqueness. This new algorithm is related to the Dallas 5 recursive algo-
Such a condition was recently put forward by Fiddy et al.1 rithm for phase retrieval from two intensity measurements
They considered the class of sampled objects whose support but requiring only a single intensity measurement (the Fourier
is contained in the union of a rectangle and an isolated point modulus) and solving the equations in a certain order such
(A) below and to the right of the rectangle, as shown in Fig. that the problem of a growing tree of solutions-5 is avoided.
1a) By way of example, the rectangular region in Fig. 1(a) First the algorithm will be described for the type of object

described above, and later for a wider class of objects.

K K : f a A. Fiddy-Brames-Dainty Objects

A a .. For mathematical simplicity, consider a sampled object whose

A l :B-g(J, 1) support is contained in the regions shown in Fig. 1(b). Its

B I 0 o , , uniqueness properties are the same as those of the objects
0 m J A"o m J considered in Fig. 1(a) since the supports are mirror images

(a) (b) of one another. The object can be expressed as in Eq. (4) with
mo = no = 0:

K-eof 5 o.A'g(m,n) f(m, n) =A 6(m, n) +g(m, n),

(-J~1,-l) *where g(m. n) is that part of f(m, n) contained in the rectan-
-J 1 ..*(J, 1) gular region of support, and A = f(0, 0) * 0. In this case, g(m.
._... T;--- ... .. .. n) is zero outside 1 -< m _5 J and 1 -< n _5 K; and it is assumed

* J thatf(J, 1) =g(d, 1) = B * 0, andg(m,K) * 0 for at least one
SI 0 6 6 6 e •0 . r1(m, n) value of' m. We will refer to objects satisfying these con-

* * n) straints as Fiddy-Brames-Dainty (FBD) objects having FBD
Ag*(-m,-n) * * 0 -K regions of support.

The autocorrelation, r1 (m, n), of f(m, n) is given by the four
IC) terms of Eq. (5) with m, = no = 0, the supports of which are

Fig.1. iddv-rames-aint obj t FI) ocontained in the sets of points illustrated in Fig. 1(c). From.ig. oFdyBae-any bject. ra) FBD)oject suppo)rt thsfgri

having two reference points..4 and B; h)) object suppowt assumed: (0 this figure, it can be clearly seen that the rightmost column
auhltorrelation s.upport. The objecd is uniquely reconstructed from and the uppermost row of rf(m, n) are simply equal to A*g(m,
its autmoorrelation function. n):
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re(J, n) - A*g(J, n), n f 1. K, (6) point. From Eq. (2), the points of the autocorrelation in

r(mK) - A*g(mK), M ( column (J - 1) are given by
K

Therefore, form - Jandforn = K, onecanreconstructg(m, r,(J - 1, n) = g(J - 1,n)A* + F_ giJ, k)g*(1, k - n),
n) to within a constant factor A* by simple inspection of rj(m, k n+1

n). In effect, the holography condition is in force for the row (15)
and column opposite reference point A, and that rowand that forn = 1 .... ,K - 1. Since, forany n,g(J- 1, n) is the only
column are reconstructed by using reference point A. unknown in Eq. ( ";), and since A * 0, g(J - 1, n) is uniquely

The value of A can be obtained as follows: From Eq. (2), determined from rq. (15). Thus the values of g(m, n) in
it is seen that there is only one nonzero term in the summation column (J - 1) are reconstructed using the values in column
for the upper left corner point in the autocorrelation: J - 1) of the autocorrelation.

rf(-J+ 1,K- 1) =g(1,K)g*(J, 1) = B*g(1,K). (8) The reconstruction algorithm continues in the manner
described above. In the fourth step, one can recursively solve

Also, from Eqs. (6) and (7), for g(2, n) using the latent reference point B and the values

rf(J, 1) =A*g(J, 1) = A*B, (9) ofr/(-J+ 2, n -1), n = K - 1,K -2 ... ,2,1. In the fifth
step, one can solve for g(J - 2, n) using the latent reference

rf(1,K) A*g(1,K). (10) pointAandthevaluesofrf(J-2,n),n= 1....K-1. One

Combining Eqs. (8)-(10) yields, assuming that rf(-J + 1, K continues the procedure until all the columns of g(m, n) are

- 1) 0, reconstructed, giving a complete and unambiguous recon-
struction ofg(m, n), and therefore off(m, 0i).

AI= r/(J, 1)r*(1, K) (11) lfg(1, K) 50, then one can alternatively use that point as
r I *(-J + 1, K - 1) B and perform the reconstruction as described above, but

Since without loss of generality we can arbitrarily fix the phase reversing the roles of the rows and columns.

of any one point in f(m, n), we set the phase of A equal to zero; It was recently noted that Eisenstein's theorem allows for

A is then given unambiguously by the positive square root of the rectangular region of support (see Fig. 1) to be extended

Eq. (11). If r,(-J + 1, K - 1) = 0, then one can obtain a over (in the same column as) point A. However, in that case,

similar expression for IA 12 using the first nonzero point, rf(m, there is no simple recursive algorithm for reconstructing the

K - 1), to the right ofrf(-J+ 1,K - 1). SinceA is known, object.

g(J, n) and g(m, K) can be determined unambiguously from
Eqs. (6) and (7). Note that B = g(J, 1) = rf(J, 1)/A*. B. Support Uniqueness for Fiddy-Brames-Dainty

Having the values of the top row and rightmost column of Objects
g(m, n), one can then solve for the leftmost column in the In the reconstruction method described above, it was im-
second step of the algorithm. From Eq. (2), the point of the plicitly assumed that the support of the object function was
autocorrelation just below ri(-J + 1, K - 1) has only two known. However, as will be shown by what follows, such an
nonzero terms, assumption is not necessary, since an FBD object can be

1, K - 2) = g(, K)g(J, 2) + g(, K - 1)g*(J. 1). shown to be an FBD object from its autocorrelation. In order
to use theorems"' relating to reconstructing the support of an

(12) object from the support of its autocorrelation function, during

Solving, the discussion of the object and autocorrelation supports we
assume that the object function is real and nonnegative. (It

g(1, K - 1) = [r(-J + 1, K - 2) - g(1, K)g*(J, 2)]/B*, might happen that what follows may. with appropriate mod-
(13) ifications, also be true for complex-valued objects; but this

where g(J, 1) = B. Since all the quantities of the right-hand would require further development.)

side of Eq. (13, are known and B * 0, one can unambiguously Given only the support of the autocorrelation, one can
compute g, If- 1). Similarly, the next lower point in the usually only put an upper bound on the support of the
acopu t n is 1).en Smy, tobject. "' Such upper bounds, sets that can contain translates
autocorrelation is given by

of the supports of all possible solutions, we refer to as locator

rf(-J + 1, K - 3) = g(1, K)g*(J, 3) + g(, K - 1)g*(J, 2) sets. One such locator set is the intersection of the autocor-
+ g(1, K - 2)g*(J, 1). (14) relation support with a translate of itself, where the translate

is such that the center of the second autocorrelation support
Since all the quantities in this linear equation are known ex- is within the first autocorrelation support, ' Assuming that
cept forg(l, K - 2), and sinceg(J, 1) * 0,onecan solve un- r/(-J+ 1,K- 1) ;e O. and translating the oneautocorrelation
ambiguously for g(l, K - 2). In a similar fashion, one can support so that it is centered at (-.] + I. K - 1). one arrives
recursively solve for all the values,( 1, n) (the first column on at the locator set shown in Fig. 2 for the case of the FBD object
the left) using the values of r (-.J + 1. n - 1) in this second support shown in Fig. 1()). In addition, since the autocor-
step of the reconstruction. In a sense the column m = 1 was relation is 2/ + 1 pixels wide and 2K + I pixels high. the object
solved using the latent reference pcint B, which required the must be , + 1 pixels wide and K + I pixels high. Since the
solution of column m = J before it could become effective, object support must be contained within the locator set shown

Having the first column on the left and the first column on in Fig. 2. which is J + 2 pixels wide and K + 2 pixels high. the
the right of g(m, n), one can then solve for the second column object support must include either the lower left point or I he
on the right in the third step, using A as the latent reference upper right point but not both. Keeping either one of these
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" shown ,that for this particular object shape the boundaries can
* • • be reconstructed in a simple way,' 4 assuming A, B, C 0.

Since the vector spacings between points A and B. B and C,
* • 0 0 *and C and A are each unique, from the corner points in the
* 0 e 0 •autocorrelation, as shown in Fig. 4(b), we have

Fig. 2. Locator set containing all possible solutions, used to show r(0, K) = f(0, K)f*(0, 0) = CA*, (16a)
that the support solution is unique. r(J, -K) = (J, O)f*(0, K) = BC*, (16b)

r(J, 0) = f (J, O)f*(0, 0) =BA. 0160

* . . . . . . Combining these gives

S 0 • A"_r*(O, K)r(J, 0)
, 0 , , , * r(J,-K) (17)

0 (a) J W Without loss of generality the phase of A can be chosen to be
zero, and then A is given by the positive square root of Eq.
(17). Then we can also compute

B = r(J, O)/A*, (18a)

0 . . C = rO, K)/A*. (18b)

_- :Then the values of the leftmost column of the object are given
• o • •• 0.1J by

* f(0, n) = r(-J, n)/B, 119)

the values of the bottom row are given by

(b) f(m, 0) = r(m, -K)/C*, (20)

Fig. 3. Alternative case. (a) Object support: (b) autocorrelation and the values of the diagonal are given by

support: (c) locator set. f(m, K - m) = r(m, K - m)/A*. (21)

two points and discarding the other, one is left with the sup- From this point one could determine the remainder of the
port of the object (or the 1800 rotated version-the twofold object by solving systems of equations, '5-14 but an easier way
ambiguity). Suppose, on the other hand, that rj(-J + 1, K
- 1) = 0. For example, suppose that the object support is that K C- f (0,K
shown in Fig. 3(a). Then the autocorrelation support is that
shown in Fig. 3(b). A locator set, formed by taking the in-
tersection of this autocorrelation support with one translated .

to be centered at the first nonzero point in row (K - 1), is
shown in Fig. 3(c). As in the case of Figs. 1 and 2, since the A=JO,0). ....... B f(,
autocorrelation is 2K + 1 pixels high, the object must be K + _ ........
1 pixels high, and therefore either the lower right or the upper 0 (a)
left point (but not both) in Fig. 3(c) must be within the object
support. Suppose we take the lower left point as being within r(-JK)=CB"

the object (choosing the upper right point will result in the . . . . . .

1800 rotated solution). Then, since the autocorrelation is 2J * : * • * • •

+1 pixels wide and therefore the object must be J + 1 pixels . . . . . . .. ...
wide, the object must be contained within the first J + 1 col- . . . . ......

umns on the left of Fig. 3(c), which is just the support of the ..... . . . . . . .

object as shown in Fig. 3(a). From these examples it can be ..... ....

seen that, in general, if the object is an FBD object, then its
support can be reconstructed from the autocorrelation func-. . . . . ... ...... .
tion. fron which it is also evident that the object has an FBD . . .... .....
support. . . . . . . . . . . . . .

C. Triangular Objects
Other types of objects, in addition to FBD objects. can be re- . .......
constructed by the recursive method. In this and the next T......

section the reconstruction of two other classes of objects are (rj,-K)bB"
shown. Consider. for example, objects whose support is Fig.4. Triaiigti Inr-shiiect. i Objectsu pirt Ibm not cr-

contained in the triangular shape shown in Fig. 4(a). As- relation support. The odbjec is iniqiey tamng I ria lu la r -. a ped

suing that the object's support is known a priori, it has been olotions) reco 'nstrucuted Ir on its autolorrelatio n il lU o0.
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1 1 1 If one started with a random object having the same support

2 2 1 3 1 as the object in Fig. 5(b), and if one incorrectly assumed that
the object had the same triangular support as the object in Fig.

1 2 1 1 1 5(a), then one would obtain what at first glance would appear
O0 (b) to be a triangular-shaped solution. In the process of calcu-

lating the solution one would use only the points on the pe-
rimeter of the autocorrelation function, with which the "so-

1 1 i lution" would be consistent. However, on further inspection

2 8 8 2 one would usually find that the triangular-shaped solution is
inconsistent with the interior points of the autocorrelation

1 8 15 8 1 function. Only in the unlikely event that the original object's

2 8 8 2 1 Fourier transform is factorable would the triangular-shaped
solution be completely consistent with the autocorrelation

1 2 1 1 1 function. Therefore if the given autocorrelation function

(c) (d) admits to a possible solution by the recursive method, then
one should reconstruct the solution with the assumed support,Fig.. Specific triangular-s haped object. ta, The ohject: I hI a t

,ev,,nd nontriangular-haped 'clutioln; q ci the common aotit'Orrela- then compute its autocorrelation function and compare it with
tion function: id) the tunction used t svnthesize objects.hown in oat the given autocorrelation function to determine whether the
and bi. assumed support is valid.

is possible if one cleverly chooses the order in which the D. Another Case
equations are solved. In particular. only one linear equation For a final example, consider objects contained within the
with one unknown at a time need be solved. and the solution support shown in Fig. 6(a). Comparing it with Fig. 1(b), it
at each step is unique, if one solves in the following order. In woulW be a FBD object if it were not for the fact that B = 0.
a similar manner as was done for the FBD objects, solve for Assuming that the support of the object is known, it can be
the points in column m = 1 using B as a latent reference point, reconstructed by the following recursive steps if points A and
and solve for the points in row n = I using C as a latent ref- B' * 0 and if either point C'or C" * 0. Firstf(J, 2) .. f(J,
erence point. Next solve for the points in column m = 2 using K) and f(2, K) .... f(J - 1, K) are solved using A as the ref-
B as a latent reference point, and solve for the points in row erence point. A can be determined from an equation similar
n = 2 using C as a latent reference point. This procedure is toEqs.(ll)and(17). NextC' =f(1, K-1),thenf(1, K-2),
continued until all of f(m. n) is reconstructed. Other or- .... then f(1, 2) are solved using B' as the latent reference
derings for the recursive solution of the equations are also point. Next f(d - 1, 1) is solved using C' or C" as the latent
possible. reference point. Next f(1, 1) is solved using B' as the latent

The solution given above for the triangular-shaped object reference point. Next f(J - 1, 2) ..... f(J - 1, K - 1) are
is unique among objects having that support but may not be solved using A as the latent reference point. Then the pattern
unique among all objects. Momentarily restricting f(m, n) repeats: solve forf(2, K - 1). f(2, 2) recursively using B',
to the case of nonnegative objects, one can use the autocor- then solve for f(J - 2, 1) using C' or C". then solve for f(2, 1)
relation support tri- intersection reconstruction for convex
sets'" to show that there exists a family of object supports that C" C' C' D
have autocorrelation supports equal to the one shown in Fig. K*. K.. 9 0 0 o
44b). One member of that family is the original object support * * * * .
shown in Fig. 4(al. Another member is an object support 0 * a * * B C . 0 •
resembling the autocorrelation support shown in Fig. 4(b) but * * * • -- B
only half its size. For these latter members there is no simple 0-
recursive reconstruction algorithm as there is for the trian-A 0  J A 0 J
gular-shaped object. (a) (b)

Further insights can be obtained by analyzing a simple case.
A case for which there are exactly two different solutions (not
counting 180*-rotated versions) can be obtained by starting K * 0 • •
with nonsymmetric functions hI(x. Y) and h.,(x, Y) whose . . . .0 * •
Fourier transforms are nonfactorable and generating a first . . . . . . .

object. which is h 1(x,.v) convolved with h.(x,). , and a second . 4 . . a * * •
object. which ishI(x,y) convolved withh-x. -Y) (i.e., the - - : .
cross correlationt. I Two such objects, their common auto- • 9 * * * • J
correlation function, and the hlx. v = hix. y 0used to gen- •
erate them areshown in Figs. 5(a) thrpugh 5id). respectively. * * * * * •

In this case one obtains the "unique" solution shown in Fig. . . * 0
.51at it triangular support is assumed, and the "unique" solu- (c)
I on hown in Fig. 51 h) if the nly other possible support is Fi \. ; : iwher case relaed toi FHI) t,hletts ,11 Ohect support:

assuimed. ut irnut I' stluirt reuoiist rlltllI ii .iot;rrethill lppiurt
Since relativelv lew 2-1) oibject. have factorable Fourier Ili, hli t i i ret miitructed lrum i . ,lUti'crrtIali'n ftnction. with

transforns. the atnbigiois cxample .hwn in Fig. 5 is unusual. M.,
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using B', then solve for f(J - 2, 2)..... f(J - 2, K - 1) using to only a relatively small number of types of objects. How-
A, etc., until all the columns are solved, ever, the approach of carefully selecting the order in which the

The solution for this object is unique among objects having equations are solved should be helpful in the more general use
support contained within the support shown in Fig. 6(a). of Dallas's method by limiting the growth of the tree of solu-
However, another support may also be possible. In a manner tions..5
similar to that used in connection with Figs. 1-3, the possible
support solutions can be narrowed down to those of Fig. 6(a)
and Fig. 6(b), given the autocorrelation support shown in Fig. ACKNOWLEDGMENT
6(c). For the support shown in Fig. 6(b) one can reconstruct Helpful discussions with T. R. Crimmins are gratefully ac-
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ABSTRACT

The iterative Fourier transform algorithm has been demonstrated

to be a practical method for reconstructing an object from the

modulus of its Fourier transform (i.e., solving the problem of

recovering phase from a single intensity measurement). In some

circumstances the algorithm may stagnate. New methods are described

that allow the algorithm to overcome three different modes of stag-

nation: those characterized by (1) twin images, (2) stripes, and

(3) truncation of the image by the support constraint. Curious

properties of Fourier transforms of images are also described: the

zero-reversal for the striped images and the relationship between

the zero lines of the real and imaginary parts of the Fourier trans-

form. A detailed description of the reconstruction method is given

to aid those employing the iterative transform algorithm.

To appear in the Journal of the Optical Society of America A

(November 1986).
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1. INTRODUCTION

In a number of different disciplines including astronomy, wave-

front sensing, x-ray crystallography and holography, one encounters

the phase retrieval problem: given the modulus IF(u, v)I of the

Fourier transform

F(u, v) = IF(u, v)I exp [io(u, v)] = [f(x, y)]

= fJ_'f(x, y) exp -i2w(ux + vy)] dx dy (1)

of an object f(x, y), reconstruct the object f(x, y) or, equiva-

lently, reconstruct the Fourier phase *(u, v). (Here and throughout

this paper functions represented by upper case letters are the

Fourier transforms of the functions represented by the corresponding

lower case letters.) Since the autocorrelation of the object is

given byJ-l[ F(u, v)i2], this is equivalent to reconstructing

an object from its autocorrelation. Many solutions to this problem

have been proposed [l-12]. The method of solution we feel is most

practical from the point-of-view of minimum computational complexity,

minimum sensitivity to noise and applicability under the most general

assumptions is the iterative Fourier transform algorithm [1-3].

The iterative transform algorithm, a descendant of the

Gerchberg-Saxton algorithm [13-15], bounces back and forth between

the object domain, where a priori knowledge about the object such as

nonnegativity or its support is applied (the support is the set of

points over which the object is nonzero), and the Fourier domain,

where the measured Fourier modulus data is applied. The algorithm

is reviewed in Section 2. Although the algorithm works well for many

cases of interest, there is no guarantee that it will converge to a

solution.

For certain types of objects the iterative algorithm can stagnate

on images which are not fully reconstructed. Stagnation of the
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algorithm means that the output image changes very little after many

further iterations while not at a solution. A solution is any

Fourier transform pair that satisfies the measured data and con-

straints in both domains with an error metric (defined later) no

greater than the expected root-mean-squared error of the measured

data. This paper will describe three such conditions of stagnation

and algorithms that we have developed to jump each of these stagna-

tion hurdles, allowing the algorithm to move on toward a solution.

The three modes of stagnation are those characterized by (1) simul-

taneous twin images, (2) stripes superimposed on the image, and (3)

unintentional truncation by the support constraint.

The first stagnation problem results from the fact that an object

f(x, y) and its twin f*(-x, -y) (the complex conjugated object

rotated by 180 degrees) both have the same Fourier modulus and, for

cases in which the support of the object is symetric with respect

to this rotation, have the same support. If the iterative algorithm

starts from an initial guess of random numbers there is an equal

probability that it will reconstruct either of these two objects.

The problem arises when, during the initial stages of reconstruction,

features of both objects are reconstructed simultaneously. If this

situation continues and features of both objects become equally

strong (in the sense that applying the constraints does not favor

one over the other), the iterative algorithm may stagnate. Not able

to suppress one twin image and converge to the other, the algorithm

tries to reconstruct both together and goes nowhere.

Since the Fourier transform of the linear combination

t f(x, y) + (1 - t)f*(-x, -y) does not have modulus F(u, v)J except

for t - 1 or 0 [assuming f*(-x, -y) 4 f(x, y)], an image outputted
&by the algorithm in this condition is not a solution consistent with

the data. This is recognized by the algorithm from the fact that

the error metrics (defined in Section 2) are nonzero (or in the

presence of noise, greater than the expected RMS error of the data)
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in this circumstance. This mode of stagnation often occurs if the

support of the object is centro-symmetric. An example of twin-image

stagnation is displayed in Figure 2(b) of Reference 16. A method

for overcoming this stagnation problem is described in Section 3.

The second stagnation problem is characterized by an output image

that looks much like the true object but with a pattern of stripes

superimposed. The pattern of stripes is approximately sinusoidal in

one direction and constant in the orthogonal direction. The stripes

are usually of low contrast and therefore are not objectionable, but

they occasionally are of sufficiently high contrast to be disturbing.

They are stronger over the support of the object and weaker outside

the support. This problem frequently occurs to varying degrees.

Examples of its occurence are Figures 3(f), 3(i), 4(a) and 4(b) of

Reference 1, Figures 9(a)-9(d) of Reference 17, and to a lesser

extent Figure 2(b) of Reference 16. The error metric is nonzero when

they are present since the stripes extend (although with lower con-

trast) outside the known support of the object, and so the striped

images are not a solution and do not represent a uniqueness problem.

Methods for overcoming this mode of stagnation are given in

Section 4. During the study of the stripes phenomenon, some inter-

esting properties of the Fourier transforms were discovered, they

too are described in Section 4.

The third stagnation problem arises when the support constraint

is used in a manner that is inconsistent with the partially recon-

structed image outputted by the algorithm. If the partially recon-

structed image is in a position that is translated relative to the

position of the mask array defining the support constraint, then the

object domain step of the algorithm will inadvertently tend to

truncate (cut off spatially) part of the image. This usually results

in stagnation of the algorithm. A previously reported method of

reducing the likelihood of encountering this pr.oblem [3] is described

in Section 6. A new method for overcoming this stagnation problem

is introduced in Section 5.
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As an aid to the practical implementation of the iterative

transform algorithm, Section 6 discusses a number of helpful hints

that make it converge more reliably. This description should help

those employing the iterative transform algorithm to achieve greater

success and to convert some of the "black art" of the iterative

approach into a more automatic algorithm. Section 7 contains a

summary and conclusions.

2. REVIEW OF THE ITERATIVE TRANSFORM ALGORITHM

When working with sampled data on a digital computer, one employs

the discrete Fourier transform (DFT)

N-1

F(u) = f(x) exp (-i2ru x/N) (2)
x=O

and its inverse

N-l

f(x) = N- 2  , F(u) exp (i2ru xIN) (3)

u so

which can be computed using the Fast Fourier transform (FFT) method.

Here we employ u and x as two-dimensional vectors, x = (xl , x2 ),

u = ui, u2), where u1 , u2, X,, and x2 = 0, 1, 2,

N - 1 (square arrays are assumed for simplicity). In order to avoid
2

aliasing in the computation of IF(u)I , we restrict f(x) to be zero

for x 1 > N/2 and for x N2 !N/2. Therefore we are considering only

problems for which the object has finite support. For problems in

astronomy, f(x) is a real, nonnegative function; but for other

problems f(x) may be complex-valued. This paper assumes the case of

real, nonnegative objects (particularly in the discussion of

stripes), although much of the discussion can also be applied to the

more general case of complex-valued images.
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The simplest version of the iterative transform atorithm follows

the philosophy of the Gerchberg-Saxton algorithm, and it is known as

the error-reduction algorithm [1]. It can be viewed in a number of

different ways: in terms of the method of successive approximations

[18], as a form of steepest-descent gradient search [3], or as a

projection onto sets in a Hilbert space (the Fourier modulus con-

straint being onto a nonconvex set, however, so convergence is not

assured) £19].

For the most general problem, the error-reduction algorithm

consists of the following four steps (for the kth iteration):

(1) Fourier transform gk(x), an estimate of f(x), yielding Gk(u);

(2) make the minimum changes in Gk(u) which allow it to satisfy

the Fourier-domain constraints to form G'k(u), an estimate of F(u);

(3) inverse Fourier transform G'k(u), yielding g'k(x), the

corresponding image; and (4) make the minimum changes in g'k(x)

that allow it to satisfy the object-domain constraints to form

(x), a new estimate of the object. For phase retrieval from a

single intensity measurement, in which the Fourier modulus IF(u)l is

the square root of the intensity, these four steps are

Gk(U) = Gk(U)I exp [iPk(U)] = gk(x)], (4)

G (u) = JF(u)J exp [i6k(u)], (5)

q (X) 15 4 G(),(6)

Sgk+l(X) - (7)

where y is the set of points at which g'k(x) violates the object-

domain constraints and where gk, G'k and Ok are estimates of

f, F and the phase 0 of F, respectively. The algorithm is typically

started by using an array of random numbers for g0 (x) or for
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0o(u). Figure I shows a block diagram of the iterative transform

algorithm.

For the astronomy problem, the object-domain constraints are the

object's nonnegativity and a (usually loose) support constraint.

The diameter of the object can be computed since it is just half the

diameter of the autocorrelation; however, the exact support of the

object in general cannot be determined uniquely from the support of

the autocorrelation [20], and so the support constraint cannot be

applied tightly. For other problems, one may not have a nonnega-

tivity constraint, but have a priori knowledge of a tighter support

constraint [21].

For the problem of phase retrieval from two intensity measure-

ments, g'k(x) = Ig'k(x)I exp Eie'k(x)] is complex-valued, and

Step 4 becomes

gk+l(X) = lf(x)l exp [iek+l(x)] - If(x)l exp [ie(x)), (8)

where If(x)J is the known modulus of the complex-valued object and

ek is an estimate of the phase of the object. With this modulus

constraint in the object domain, the error-reduction algorithm is

precisely the Gerchberg-Saxton algorithm. In this paper we consider

only the problem of phase retrieval from a single intensity

measurement.

A measure of the convergence of the algorithm to a solution (a

Fourier transform pair satisfying all the constraints in both

domains) is the squared-error metric in the Fourier domain,

E 2 E IG(u)i - IF(u)l ]2 ,  (9)

or in the object domain,

2 2

Eo  Ig (xq (10)

Xcy
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where y is defined as in Eq. (7). Values of the error metrics men-

tioned later are the square roots of these exoressions divided by

JxJg'k ( x ) 1 2 ' i.e., normalized root-mean-squared (NRMS)

errors. It can be shown that the error-reduction algorithm converges

in the sense that the squared error cannot increase with an increas-

ing number of iterations C3].

Although it works well for the problem of phase retrieval from

two intensity measurements, the error-reduction algorithm usually

converges very slowly for the problem of phase retrieval from a

single intensity measurement being considered here [3]. Several

modifications of the iterative transform algorithm were made and

tested, and most of them converged faster than the error-reduction

algorithm [3]. To date, the most successful version is the hybrid

input-output algorithm, which replaces Step 4 of the algorithm by

[l, 3]

g (x) x y

gk+l(x) : (11)

gk(x) - Bg(x), x c y,

where 8 is a constant feedback parameter. Values of 8 between 0.5

and 1.0 work well. When using the hybrid input-output algorithm,

gk(x) is no longer an estimate of f(x) ; it is instead the input

function used to drive the output g'k(x) [which is an estimate of

f(x)] to satisfy the constraints. Hence only the object-domain error

E is meaningful [3]. When using the hybrid input-output algo-

rithm, even E does not always correlate with image quality as well

as one would like. For this reason one may prefer to perform a num-

ber of cycles of iterations, where one cycle consists of, say, 20 to

50 iterations of the hybrid input-output algorithm followed by 5 to

10 iterations of the error-reduction algorithm, and note E only0

at the end of a cycle [3].
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For a more complete description of the iterative algorithm, see

Reference 3. Additional details concerning the implementation of

the algorithm are given in Section 6. A description of the algorithm

as it applies to a number of different problems is given in

Reference 18.

3. METHOD FOR OVERCOMING SIMULTANEOUS TWIN IMAGES

Figure 2(a) shows a real, nonnegative object, f(x), which has

centro-symmetric (square) support, and Figure 2(b) shows the conju-

gate or twin image, f*(-x), which has the same Fourier modulus,

!F(u)l. Since the object is real-valued, f*(-x) = f(-x). Figure

2(c) shows the output image of the iterative transform algorithm

after a few hundred iterations using both a nonnegativity constraint

and a support constraint consisting of the actual (assumed known a

priori) square support of the object. Upon close inspection of

Figure 2(c), it is seen that features of both f(x) and f*(-x) are

present (to see it, it helps to turn the page upside down). Often a

few additional cycles of iterations are all that is needed to con-

verge to one or the other of the twin images. An example of this is

the sequence of output images shown in Figure 6(c), 6(d), 6(e) and

6(f) of Reference 2. However in the case of Figure 2(c) (although

with a very large number of further iterations it may be possible to

move away from this Output having both twin images) this output image

represents a fairly stable condition of stagnation. Like the fabled

donkey standing between two bales of hay who starved to death because

he was unable to decide which to eat, the algorithm is not readily

able to move farther from the features of either of the twin images

and so it is also prevented from moving closer to one over the other.

We have devised a method for getting beyond this condition: the

reduced area support constraint method which consists of the follow-

ing steps.
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(1) Replace the current, correct mask defining the support

constraint with a temporary one that (a) covers only a

subset of the correct support including at leasL one of its

edges and (b) has no 180 ° rotational symmetry (is not

centro-symmetric).

(2) Perform a few iterations with the temporary mask.

(3) Replace the temporary mask with the correct one and continue

with the iterations.

The reduced-area support constraint method is illustrated by the

example shown in Figure 3. Figure 3(a) shows the stagnated output

image of Figure 2(c) used as the input image to the algorithm. It

had an error metric E = 0.027. The correct support is a square.0

Figure 3(b) shows the reduced-area temporary support mask used for

ten error-reduction iterations. Figure 3(c) shows the output image

after the ten iterations. The correct square support constraint was

then reinstated. Figure 3(d) shows the output image after 10 more

iterations of the error-reduction algorithm (E = 0.060);0

Figure 3(e) shows the output after an additional 60 iterations of

the hybrid input-output algorithm plus 5 iterations of error-

reduction (Eo = 0.027); and Figure 3(f) shows the output after an

additional three cycles of 40 hybrid input-output plus 5 error-

reduction iterations each (E = 0.018).
0

The reduced-area support constraint tends to favor some of the

features of either f(x) or f*(-x) over the other. Since it employs

an incorrect support constraint, it cannot converge to a solution.

However, when the correct support constraint is reinstated, one of

the two twin images may have a sufficiently large advantage over the

other that the algorithm can then converge toward that image.

In the small number of trials in which it was tested, the
reduced-area support constraint method worked in the majority of the
cases tried, but it is by no means guaranteed to work. If an

103



application of the method does not relieve the problem of stagnation

with both twin images present, then one might try another application

of the method using a different reduced-area temporary support

constraint mask. The method as it stands has not yet been optimized

as to the form of the temporary mask or the number or type of itera-

tions that should be performed with the temporary mask. Neverthe-

less, the method has been shown to be very promising as a solution

to the problem of stagnation with features of both twin images

present.

For the example shown, knowledge that the simultaneous twin image

mode of stagnation was present was obtained by visual inspection of

the output image. The decision could also be automated by measuring

the degree of symmetry of the image. An example of such a measure

would be the ratio of the peak of the cross-correlation of g'(x) with

g'*(-x) to the peak of the autocorrelation of g'(x).

4. METHODS OF OVERCOMING STRIPES

Several methods of overcoming the problem of stagnation associ-

ated with stripes across the image were attempted before successful

methods were developed. Before describing the successful ones, two

of the unsuccessful methods are mentioned here because they illu-

strate features of the problem.

4.1 SOME FEATURES OF STRIPES

The 2error metric, E0 or F9 can be considered as a function

of an N2-dimensional parameter space spanned by the values of g(x)

or of 0(u). Stagnation with stripes can be thought of as being stuck

at a local minimum of the error metric. This local minimum is not

very far from the global CEO = EF = 0 for g(x) = f(x)] minimum,

since the output image usually closely resembles the original object

except for the presence of the stripes. It was thought that if the

input image g(x) were sufficiently perturbed then the estimate g'(x)
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would be moved out of that local minimum and perhaps fall into the

sought-after global minimum. Experimental tests were made in which

increasing amounts of random noise were added to g(x) and from these

starting points more iterations were performed. It was found that

even with very large amounts of added noise, in very few iterations

the output image reverted back to the same point of stagnation having

the same stripes as before. These experiments are an indication that

the local minima characterized by stripes are very strong local

minima.

A second unsuccessful method utilized the fact that since g(x)

is real-valued, and so 6(-u) - -O(u), the sinusoidal stripes must

come from a conjugate pair of localized areas in the Fourier domain.

In addition, since the iterative algorithm forces the output image

to have the correct Fourier modulus at the sampled points, the error

must also be a pure-phase error at the sampled points (see Section

4.4 for a discussion of the values between the samples). The spatial

frequency of the stripes was measured to determine what area of the

Fourier domain was in error. Constant phase terms were added to the

Fourier transforms of the striped images in these areas in a

conjugate-symmetric way, but the stripes remained in the image

despite the use of a variety of constant phases and a variety of

sizes of such areas. This was true despite the fact that, when

similar constant phase errors were added to the Fourier transform of

the object itself, the corresponding image had stripes that looked

very much like the type of stripes that were produced by the mode of

stagnation of the iterative algorithm; but these stripes went away

after only one or two iterations, whereas the stripes produced by

the stagnating iterative algorithm were very stable. This experience

pointed out the spatial complexity of the phase error that caused

the stripes.
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4.2 VOTING METHOD

The key to solving the problem with the stripes is the fact that

if the iterative algorithm is applied multiple times, each time with

a different random starting guess, then the stripes of the various

reconstructions will usually have different orientations and frequen-

cies. This behavior was noted in Figure 9 of Reference 17. This

implies that the errors will occur in different areas of the Fourier

domain. Since the sinusoidal patterns usually become well defined,

the areas of the phase errors are localized reasonably well. These

features of the phase errors suggested a voting method. The idea is

that if two of three Fourier phases are similar but a third is

different, then the dissimilar phase is usually incorrect and should

be discarded.

The voting method consists of the following steps:

(1) Generate three output images with different stripes by

running the iterative transform algorithm three times, each

with different random numbers for the initial input (if one

of the output images is without stripes, then the problem

is, of course, solved).

(2) Crosscorrelate the second and third images and their twins

(the images rotated 180") with the first image to determine

their relative translations (to within a small fraction of

a pixel, which can be accomplished by oversampling the

crosscorrelation peak) and orientations.

(3) Fourier transform all three images.

(4) Subtract appropriate linear phase terms from the phases of
the Fourier transforms of the second and third images, and

conjugate if the orientation is opposite, to give the

translations and orientations in the image domain that

would cause the three images to be in registration. This
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removes unwanted relative linear phase terms in the Fourier

transforms (which could have been accomplished by translat-

ing the second and third images prior to Fourier transfor-

mation, but fractional-pixel translation is more easily

accomplished in the Fourier domain).

(5) At each point u in the Fourier domain, compute the modulus

of the difference between each pair of complex transforms.

Average the two complex numbers that are the closest

(discarding the third) and replace the complex value at that

point with this average. Optionally: replace the modulus

of the average with the measured modulus. Alternatively,

one can take the phase midway between the two closest phases

of the three, if proper attention is paid to modulo-2w

questions.

(6) Inverse Fourier transform to yield the corresponding image.

The output of the voting method is used as the input to further

iterations of the iterative transform algorithm.

If the method fails because two of the Fourier transforms have

errors in the same location, then it should be repeated using

different random numbers for the initial inputs to the iterative

transform algorithm.

An example of the use of the voting method is shown in Figure 4.

Figure 4(a) shows a diffraction-limited image of a satellite which

is our object. It was formed from a digitized picture of a satellite

within a 64 x 64 array imbedded in a 128 x 128 array. The digitized

picture was low-pass filtered using the incoherent transfer function

of a circular aperture of diameter 62 pixels (the Fourier transform

of the object was multiplied by the autocorrelation of the circular

aperture) to produce the object (a diffraction-limited image) shown

in Figure 4(a). The sidelobes of the impulse response due to the

circular aperture cause the diffraction-limited image to have a

107



small amount of energy well outside the Support of the object, making

the error metric E0 a 0.0026 for this object. Because of this

inherent slight inconsistency between the Fourier modulus data (which

corresponds to the diffraction-limited image) and the support

constraint, E can never be driven to zero. Figures 4(b), 4(c)

and 4(d) show three output images from the iterative transform

algorithm, each generated using different random numbers for the

starting input. The support constraint used was the 64 x 64 square

support. Stripes of different spatial frequencies are clearly seen

in each of the images. E0 for the three output images is 0.0155,

0.0316 and 0.0038, respectively. For the output image shown in

Figure 4(d), detection of the existence of the stripes is more

difficult because of the low value of Eo, but inspection of an

overexposed version of it clearly reveals them in the area outside

the support of the object. Figure 4(e) shows the output of the

voting method, for which E0 W 0.0680, and Figure 4(f) shows the

result of further iterations of the iterative transform algorithm,

for which E0 = 0.0035 and the stripes are successfully removed.

An advantage of the voting method is that one need not understand

the nature of the phase error except that it is localized in dif-

ferent areas of the Fourier domain for different output images. The

voting method may therefore be useful for other types of phase errors

in addition to those characterized by stripes in the image.

4.3 PATCHING METHOD

The patching method, like the voting method, utilizes the fact

that output images coming from different starting inputs usually have

phase errors localized in different areas of the Fourier domain.

The patching method uses an additional piece of information: since

the stripes extend beyond the known support of the object (although

they are dimmer there) they can be isolated and analyzed to determine

approximately what area in the Fourier domain contains the localized
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phase errors. With this information one can patch together a Fourier

transform having less errors from two Fourier transforms which have

these localized phase errors.

The patching method consists of the following steps:

(1-4) Perform steps (1) to (4) of the voting algorithm but using

only two output images rather than three (if one of the

output images is without stripes, then the problem is, of

course, solved).

(5) For each of the two images, zero out the image in its

support region. This isolates the stripes. Use a smooth

apodization to avoid sidelobe problems in the Fourier

domain.

(6) Fourier transform the isolated stripes from each.

(7) Smooth and threshold the Fourier modulus (after zeroing

out a region about the origin to eliminate an undesired DC

component) to generate a Fourier mask for each of the two

images. These masks define the areas in the Fourier domain

that have the phase errors.

(8) If the two masks overlap, repeat Step (7) using a larger

threshold value or a smaller smoothing kernel or redo

Steps (1) to (7) using another random input to start the

iterative transform algorithm.

(9) Form a new Fourier transform having the phase of the

Fourier transform of the first image except within its

Fourier mask, where the phase of the Fourier transform of

the second image is substituted.

(10) Inverse Fourier transform to yield the corresponding image.

The output of the patching method is used as the input to further

iterations of the iterative transform algorithm.

109



An example of the use of the patching method is shown in Figures

5-7. Figure 5(a) shows the object, a diffraction-limited image of a

satellite (Eo = 0.0024), and Figures 5(b) (E° = 0.0268) and 5(c)

(Eo = 0.0503) show two output images from the iterative transform

algorithm, each generated using different random numbers for the

starting input. Upon close inspection, stripes of different spatial

frequencies can be seen in each of the output images. Figure 6 shows

the same thing as Figure 5, only heavily overexposed in order that

the stripes over the object and beyond the support of the object can

be more readily seen. Figure 7(a) shows the apodized mask used in

the image domain which, when multiplied with the striped image,

isolates the stripes. The resulting isolated stripes are shown in

Figure 7(b). (A bias was added in the display of this result making

the most negative value black, zero value grey and the largest value

white.) Figure 7(c) shows the modulus of the Fourier transform of

the isolated stripes, and Figure 7(d) shows the Fourier mask obtained

by thresholding that Fourier modulus at a value 0.9 times the peak

and smoothing with a 16 by 16 kernel. Figures 7(e) to 7(g) show the

same things as Figures 7(b) to 7(d) but for the second striped image.

The output of the patching method is shown in Figures 5(d) and

6(d)--the stripes in the two images were eliminated. Its error

metric is E0 = 0.00576 which is much lower than that for the

striped images.

The voting and patching methods are both completely automated

once it is decided that the iterative transform algorithm is

stagnating on an image that has stripes. For the examples shown,

knowledge that the striped-image mode of stagnation is present was

obtained by visual inspection of the output image, from which it is

quite obvious. This decision could also be automated, for example,

by performing, for a given single output image, Steps (5) and (6) of

the patching method and detecting the presence of especially bright

areas in the Fourier domain.
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4.4 ZERO REVERSAL OF THE FOURIER TRANSFORM

Comparison of the Fourier phase of the striped image with that

of the original object yielded interesting insights into the

properties of Fourier transforms.

Figure 8(a) shows the phase of the Fourier transform of the

original object [shown in Figure 4(a)] and Figure 8(b) shows the

upsampled phase of the area in Figure 8(a) outlined by the white

square. Figure 8(c) and 8(d) show the same thing for the striped

image Cshown in Figure 4(b)]. To reduce the linear phase component,

the centroid of the object was translated to the origin prior to

Fourier transformation, and the striped image was translated to be

in register with the object. The large circular pattern in

Figure 8(a) is due to the simulation of the effects of diffraction

by the circular aperture mentioned earlier. Outside the circle the

Fourier transform has small nonzero values due to round-off error in

the computer. Note that to upsample the phase, one must compute the

phase of an upsampled complex Fourier transform which can in turn be

computed by Fourier transformation of the object (or image) imbedded

in a larger array padded with zeros.

Of particular interest is the phase within the four small squares

drawn on Figures 8(b) and 8(d). In Figure 8(b), the phase within

the upper right square "wraps around" one point, Uo, in the Fourier

domain. That is, if one starts at a point u near uo, as one

progresses full circle around u0 the phase slips by 2w radians.

It is easily shown that this branch cut in the phase indicates that

the Fourier modulus goes through a zero at u0 [22]. A second-order

zero [where F(u ) - 0 has zero first partial derivatives as well]

might not exhibit phase wrap-around, but they are rare compared to

first-order zeros. The existence of zeros in F(u) implies an

inherent 2nn (where n is an integer) ambiguity in the phase. Self-

consistent phase unwrapping cannot logically be erformed in such
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cases. This is the usual case for Fourier transforms of images.

From the presence or absence of phase wrap-around, it is evident that

the Fourier transform goes through first-order zeros both within the

upper right and lower left squares, but not within the two squares

in the middle of Figure 8(b). On the other hand, for the case of

the striped image, the presence or absence of first-order zeros is

just the opposite, as can be seen in Figure 8(d). Where there are

two first-order zeros for the original object there are not any for

the striped image and vice versa. That is, the zeros are "reversed".

(This zero reversal should not be confused with the flipping of

complex zeros that is encountered in the analysis of uniqueness.)

Also, by inspecting upsampled versions of the Fourier transforms, we

found that the first-order zeros did not become higher-order zeros

(which could cause the disappearance of the phase wrap-around), but

they truly became nonzero. The difference between having and not

having first-order zeros is extremely important: around a first-

order zero the phase wraps around and varies very rapidly whereas

otherwise the phase is relatively smooth. Note that the transitions

from white (w phase) to dark (-w phase) in Figure 8 are not jumps in

phase per se; they are just an artifact of our ability to compute

and display phase only modulo 2r.

If one draws a quadrilateral having vertices at the four points

at which the zeros are reversed, one finds that the Fourier phase of

the striped image differs from that of the object only (approxi-

mately) within the quadrilateral. Note that the phases outside the

quadrilateral are practically the same in Figure 8(d) as in Figure

8(b). That is, the Fourier phase error for the striped image is

localized in the area between the reversed zeros.

It is not accidental that the reversed zeros come in pairs. In

order for the phase to be consistent in the surrounding area, a

continuous path around the entire area of the localized phase error

for the striped image must contain the same number of first-order

zeros as for the Fourier transform of the object.
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Initially it seems contradictory that the zeros of the Fourier

transform of the striped output image could be different from those

of object's Fourier transform, since the striped image and the object

have exactly the same Fourier modulus at the sampled points.

However, this possibility arises since we are dealing with sampled

data in the computer. The zeros only rarely fall on the sampling

lattice: they usually fall some distance between the samples. In

the presence of even the slightest error, including round-off error

due to the finite word length used by the computer, it becomes

difficult to see, even from a heavily oversampled Fourier modulus,

whether it goes through zero or merely comes very close to it. More

important, though, is that since the striped image has energy

throughout image space, rather than being confined to the support of

the object, its Fourier modulus is aliased and differs from the

Fourier modulus of the object for points off the sampling lattice.

Hence its Fourier transform can truly have zeros where the object's

Fourier transform does not, and vice versa, despite their having the

same Fourier modulus at the sampled points.

4.5 LINES OF REAL AND IMAGINARY ZEROS

Figure 9 shows the lines where the real and imaginary parts of

the Fourier transform of the object (in this case translated to be

in one quadrant of the array) are zero, for the same area of the

Fourier domain shown in Figure 8(b). We will refer to these lines

as the lines of real zeros and lines of imaginary zeros. (Note we

are referring here to the zeros in the two-dimensional real plane,

not to the zeros in the complex plane which are frequently discussed

in regard to the uniqueness of phase retrieval.) The lines of real

zeros were computed by scanning across each line and each column of

an oversampled version of the real part of the Fourier transform and

noting where it changed sign. The lines of imaginary zeros were

found in a similar manner. In Figure 9 the real zeros are denoted
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by dark lines and the imaginary zeros by light lines on a grey back-

ground. The complex Fourier transform goes through a zero wherever

both the real part and the imaginary part are zero, that is, where

the dark lines and light lines intersect. The entire discussion

regarding the zeros of the Fourier transform of the striped image

versus those of the object can be explained in terms of Figure 9 and

a similar picture for the striped image case, as well as by using

Figure 8.

Except for special cases, in Figure 9 the lines of real zeros

and imaginary zeros cross at single points rather than being tangent

to one another over extended intervals; hence the zeros tend to occur

at discrete points.

In addition, notice that the lines of imaginary zeros have a

strong tendency to be half-way between two lines of real zeros, and

vice versa. This can be understood as follows. Half-way between

two neighboring lines of real zeros (think of them as a single-level

topographic map of the real part) one would expect to find a line of

local maxima or minima, like ridges or gullies, respectively. These

ridges (or gullies) have the property that they are local maxima

(minima) along all directions except along the '-ngth of the ridge

(gully). Since the object f(x, y) was translated to the upper left

quadrant of the plane [i.e., f(x, y) = 0 for x < 0 and for y < 0

making it "causal"] then F(u, v) satisfies the Hilbert transform

relationships (see Appendix A):

1 ( FR(u, v')
L F(u, v) = - P , J ' _v dv' (12)

fFR(U', V)
lpF u' du' (13)

where F a FR + iFI, FR and FI being real-valued and P denotes

the Cauchy principal value. For clarity in this discussion and in
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Appendix A, we use (x, y) as the two-dimensicial coordinates in

object space and (u, v) in Fourier space rather than the vector

notation used elsewhere in this paper. Since 1/(v' - v) is much

larger near v' = v than elsewhere, one would expect the integrand

near v' = v to dominate the integral of Eq. (12). If the point

(U0, vo) is at a ridge (or a gully) of FR(u, v), then one would

expect FR(uo, v') to have a local maximum (minimum) at v' = v°

and be closely approximated by a quadratic in a small region of v'

centered about v0 , since FR(uo, v') is a bandlimited function

of v' (it is the Fourier transform of a function of finite extent).

Therefore, since the numerator FR(u ° v') is even about v' = V0

and the denominator (v' - v ) is odd about v' = Vo, the integrand

is odd about v' = v0 and the contribution to the integral from the

neighborhood about v0 is near zero. Since that neighborhood is

the part of the integral that usually dominates, it is easily seen

why Fi(u, v) tends to be zero near the ridges and gullies of

FR(u, v). The same can be shown from Eq. (13). The same argument

can be used to show why FR(u, v) tends to be zero near the ridges

and gullies of Fi(u, v).

5. METHOD FOR OVERCOMING TRANSLATED SUPPORT

Since f(x - x ) has the same Fourier modulus as f(x), the0

location of the object's support is arbitrary. Frequently the image

partially reconstructed by the algorithm will not be in perfect

registration with the support constraint. Then enforcing the support

constraint causes an inadvertent truncation of part of the desired

image, causing the algorithm to stagnate. In addition to the

enlarging support method described in Section 6, a method of combat-

ting this stagnation problem is to dynamically translate either the

support constraint or the image.

The amount of translation to be used can be determined as

follows. Compute the total energy of the output image, g (x),
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(i.e., square and sum) over the area of the support constraint for

the current position of the support constraint and for the support

constraint translated by one or two pixels in every direction. The

support constraint should be translated to the position for which

the energy is maximized. This can be done occassionally or at every

iteration. Alternatively, compute the cross-correlation of the sup-

port mask with g'k(x) or with lg'k(x)[ 2 and translate according

to the peak of the cross-correlation. This method would be particu-

larly effective if, just prior to performing it, a support constraint

larger than the usual support were used for a few iterations; that

would give the truncated part of the image a chance to establish

itself.

6. ITERATIVE TRANSFORM ALGORITHM DETAILS

In the past, some researchers have had varying success in apply-

ing the iterative transform algorithm to phase retrieval from a

single intensity measurement. In this section, a number of addi-

tional aspects of making the iterative algorithm work are given as

an aid to the practical implementation of the agorithm.

Recall from Section 2 that the heart of the algorithm consists

of several cycles of iterations, where one cycle consists of K1

iterations of the hybrid input-output algorithm [Eqs. (4), (5), (6)

and (11)] followed by K2 iterations of the error-reduction algo-

rithm [Eqs. (4)-(7)]. Our experience has shown that values of K

from 20 to 100, of K2 from 5 to 10, and of the feedback parameter

a from 0.5 to 1.0 (use, say, 0.7) work well.

The discrete Fourier transforms are computed using the Fast

Fourier Transform (FFT) algorithm. The sampling in the Fourier

domain should be fine enough to ensure that the object domain array

size is at least twice the width and height of the object itself,

which is equivalent to achieving the Nyquist sarmLling rate for
2IF(u)l
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A straightforward method to evaluate Eq. (5) is to compute the

phase from the real and imaginary parts of Gk (u), then combine it
q ith FMu to form G' (u), and finally compute the real andk

imaginary parts of G' k(u) (which are required by the FFT) from its
modulus and phase. Alternatively, one can employ

G (u) = Gk(u) IF(u)l / [IGk(u)l + 5] (14)

where 6 is a very small number used to prevent overflow problems in

the rare event that Gk (u) = 0. (For some computers one can use

s = 0 with no ill effects.)

The data one must have available is an estimate, JF(u)i, of the

modulus, IF(u)I, of the Fourier transform of the object. Although

the iterative transform reconstruction algorithm is not hypersensi-

tive to noise, care must be taken to obtain the best possible esti-

mate of the Fourier modulus, which may involve considerable compen-

sation of the raw data [23], depending on how it is collected. In

many circumstances one can estimate the expected value of the

normalized root-mean-squared (NRMS) error of tl - data:

IF~u2 1/2
E [ u u (15)

E JF(u)2

As described later, this is useful for deciding when one is close

enough to a solution.

For the astronomy problem one has a nonnegativity constraint in

the object domain. Furthermore, one can compute upper bounds on the

support of the object in any of several ways [20]. The simplest way

is to use a rectangle that is half the size, in each dimension, of

the smallest rectangle that encloses the autocorrelation, which is
,2

given by the inverse Fourier transform of IF(u,> 2 If the actual

support of the object is known a priori, then that should of course
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be used. Any other types of a priori information should be used

during the iterations if available. The support constraint can in

general be defined by a mask which is unity within the support and

zero outside. If the support constraint and the set of points are

defined as binary mask arrays; then the computations of Eqs. (7),

(10) and (11) can be performed arithmetically without the use of

logic, which is advantageous when using array processors.

There are many ways to pick an initial input to the algorithm.

Although claims have been made that a certain crude estimation of

the phase offers a superior starting point [24], others have found

that random numbers do as well or better [25]. Having an initial

input close to the true solution reduces the number of iterations

required and might help to avoid some of the stagnation problems.

If another reconstruction method (Knox-Thompson [26] for astronomical

speckle interferometry for example) has yielded an image, then that

image would be the appropriate starting input. One can either view

the other reconstruction method as a means for supplying starting

inputs for the iterative transform algorithm or view the iterative

transform algorithm as a means for "cleaning up" images reconstructed

by the other method. If no other initial estimite for the object is

available, then one should use random numbers in the object domain

or for the Fourier phase, giving an unbiased start to the algorithm.

In the object domain, a convenient starting guess, g0 (x), can be

formed by filling the support mask with random numbers. Another

method [3] is to threshold the autocorrelation (at say, 0.005 its

maximum value), demagnify that by a factor of two in each dimension

by discarding every other row and every other column, and finally

fill the resulting shape with random numbers. (Note that this shape

does not necessarily contain the support of the object [20].)

The algorithm can be made to converge faster and avoid a stagna-

tion problem (see Section 5) if the support mask is chosen to be

somewhat smaller than the correct support for the first cycle or two

118



of iterations. Since it is the incorrect support, the smaller

support mask is inconsistent with Fourier modulus and stagnation will

eventually occur when it is used. Nevertheless, the smaller support

mask helps to force most of the energy of the output, g'(x), into a

confined region in fewer iterations. After this has happened the

support mask should be enlarged to the correct support constraint

for the object. This enlargement of the mask could be done in more

than one step if desired. When the algorithm has nearly finished

reconstructing the object, it is often beneficial to make the support

mask even larger than the correct support for the object. This helps

to ensure that no parts of the object are being inadvertently

truncated by the support constraint. The progression from a smaller

support mask to a large one also helps to avoid having edges of the

output image biased toward falling right at the edges of the support

mask. Use of the method described in Section 5 does this as well

and is recommended for use whenever truncation is suspected (or to

be safe at the end of each cycle or even after every iteration).

As the iterations progress, the normalized :'"S (NRMS) error in

the object domain,

Eo Igo(x)j 2 11!?
E0= Xey J(16)

[compare with Eq. (10)] should be computed. The NRMS error is a

measure of how close the current Fourier transform pair is to a

solution. Note that the denominator of the above error metric is a

constant that need be computed only once. Note also that at the end

of a cycle E0 = EF, the NRMS error in the Fourier domain [3].

When Eo goes significantly below E ̂  of Eq. (15), one has a

solution consistent with the measured data and constraints to within

the limits of the error in the given data. It is unlikely that Eo
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will ever go to zero because noise in IF(u)l almost always results

in a Fcirier modulus that is inconsistent with either the nonnega-

tivity constraint or any reasonable support constraint, or both.

This can be seen from the fact that an autocorrelation computed from

a noisy Ir(u)I will ordinarily have negative values at some points

(which could only arise from an object having negative values) and

will ordinarily have (possibly small) nonzero values far beyond the

extent of the true autocorrelation of the object. This problem can

be alleviated by setting equal to zero the values of the autocorrela-

tion that are negative or lie beyond some assumed autocorrelation

support; but even then, noise remains and there will be no nonnega-

tive image completely consistent with the Fourier modulus estimate.

On the other hand, in the presence of noise there will ordinarily

exist an output image g'(x) that is in better agreement with the

noisy data than the true image is. Consequently, for the case of

noisy data, a "solution" is not found until E is decreased to a

level somewhat less than Elr i  An exception to this is for the

very low noise case in which the dominant error is sidelobe energy

which spills outside the object's support due t. diffraction effects,

as for the examples shown in Section 4.

If all goes well, the iterative transform algorithm will converge

to a solution after a small number of cycles of iterations. If there

are multiple solutions, the iterative transform algorithm is capable

of finding any one of them, depending on the starting input [27, 28].

Confidence that the solution is the one and only true solution can

be increased by performing two or more trials of the algorithm, each

time using different random numbers for the initial input.

In some cases the iterative transform algorithm will stagnate

before reaching a solution. The algorithm can be considered to have

stagnated if the error E has failed to decrease after three addi-

tional cycles. While some objects can be reconstruced very easily,

requiring only one or two cycles, other more difficult objects can
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require many cycles comprising well over a thousand iterations.

Consequently, one should not too readily jump to the conclusion that

the algorithm has stagnated. It often occurs that very slow progress

is made for many iterations, but then the algorithm suddenly finds

its way and rapid progress is made in just a few iterations.

If the iterative transform algorithm does stagnate, then one can

start over with a different set of random numbers for the initial

input; alternatively, sever nethods for getting out of the stag-

nated condition are possible. Sometimes changing the support

constraint (enlarging it or translating it as described in Section 5)

is what is required. The need for doing this can be established by

following the steps suggested at the end of Section 5. Sometimes

altering the feedback parameter, a, helps. Temporarily using a

larger value for s, say 1.2, causes larger changes to be made and

may move the output away from the condition of stagnation; but this

should not be carried on for too many iterations since it causes the

algorithm to become unstable. If the support 'fask is centro-

symmetric or nearly so, then the simultaneous tain images can be

present. This condition can be detected visually (comparing the

output image with a second version of it rotated 1800 helps) or by

the method suggested at the end of Section 3. if this condition is

suspected, then use the method of overcoming the problem of simul-

taneous twin images described in Section 3. Even if the twin-image

problem is not present, the method might move the output image out

of the condition of stagnation. The mode of stagnation characterized

by stripes is easily detected by looking for stripes outside the

support region in a picture of g'k(x) that is heavily overexposed;

alteriatively one could use the method described at the end of

Section 4.3. If stripes are present, the iterations should be

continued until stagnation occurs, since (1) the stripes may go away

naturally and (2) further iterations cause the stripes to become more

nearly sinusoidal which is equivalent to the phase er ors being
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confined to a smaller, more distinct area of the Fourier domain,
which makes them easier to overcome by the methods described in

Section 4.

Other tricks may be helpful or necessary for certain special

cases. For example, if the object consists of some intererting

details superimposed on a diffuse background, then the defogging

method can make the reconstruction of the object easier C24].

7. SUMMARY AND CONCLUSIONS

In many cases of interest, the problem of phase retrival from a

single intensity measurement can be solved by a straightforward

application of a few cycles oF the iterative transform algorithm.

For some cases, the algorithm stagnates before reaching a solution

consistent with the data and constraints. Three diffe'ent modes or

conditions of stagnation have been identified: simultaneous twin

images, stripes superimposed on the image, and unintentional trunca-

tion by the support constraint. Methods for overcoming each of these

modes of stagnation have been devised and have been demonstrated to

be effective for particular examples. The use )f these methods in

conjunction with the iterative transform algorithm greatly enlarges

the class of objects which can be reconstructed successfully. This

has also helped to provide further empirical evidence of the unique-

ness of the solution for two-dimensional objects. Some previous

doubts of uniqueness, tied to an inability of the algorithm to

converge in some instances, have been removed [28]. In particular,

we have definitively shown that the striped images represent a local

minimum rather than a true ambiguity.

In the course of investigating the stripes phenomenon, insight

was gained into some of the properties of the Fourier transforms of

images. The Fourier transform of a striped image has a phase that

differs from that of the Fourier transform of the object in a fairly
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well defined region that is determined by the locat'ons of zeros of

the Fourier transform which are reversed, i.e., where first-order

zeros appear or disappear. First-order zeros are commoA in the

Fourier transforms of images. Attempts at phase unwrapping, as

required by the Knox-Thompson method, utilizing multiple paths of

integration will fail unless proper attention is paid to the branch

cuts associated with first-order zeros. If an image is causal, then

the lines of real and imaginary zeros of its Fourier transform follow

along the ridges and gullies of the imaginary part and the real part,

respectively, which can be understood from the Hilbert transform

relationship.
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APPENDIX A
HILBERT TRANFORMS FOR TWO DIMENSIONS

Let f(x, y) be zero for x < 0 and for y < 0 (Let all integrations

be understood to be from -.-to +4.

F(u, v) F R (u, v) + 1F IN, v) (Al)

= ff f(x, y) exp [-i2w(ux + vy)] dxdy

f~jf (x, y) exp (-i2rux) dx]I exp (-i2irvy) dy

f uy) exp (-i2wvy) dy, (A2)

where F(u, y) is zero for y <0. Cixing u to be a constant for the

moment, F(u, v) is the one-dimensional Fourier transform of ?(u, y),

which is zero for y < 0 (i.e., it is causal in y), in which case we

have the Hilbert transform relationships [29]

F(u, V) r F R(ul v') d'(3
v) __V P1  ~ V'

and

FR(u, v) = f ~-~ v' (A4)

where P denotes the Cauchy principal value. This is true for all

values of (u, v). By a similar argument we have

FINu, v) 1 R u' V) d'(5

and

F~u, v) 1P F iIpuf V) ---- du'. (A6)
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Figure 1. Block diagram of the iterative transform algorithm.
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i Figure 2. Simultaneous twin images problem. (a) Object f(x);
(b) twin image f*(-x); (c) output image from the iterative

~transform algorithm which has stagnated with features of both.
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Figure 3. Reduced-area support constraint method for overcoming
the problem of simultaneous twin images. (a) Stagnated output
image; (b) mask defining the temporary reduced-area support con-
straint; (c) output image after ten iterations using temporary
support; (d), (e) and (f) output images after further iterations
using the correct support.
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Figure 4. Voting method for eliminating stripes in the output
image. (a) The object; (b), (c), and (d) output images from the
iterative transform algorithm each with different stripes;
(e) output of voting method; (f) output image after further itera-
tions.
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Figure 5. Patching method for eliminating stripes in the output
image. (a) The object; (b) and (c) output images from the iterative
transform algorithm, each with different stripes; (d) output of
patching method.
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Figure 6. Same as Figure 5 but overexposed to emphasize the stripes.
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Figure 7. Details of the patching method. (a) Mask used to
isolate the stripes of the output images; (b) stripes isolated
from the first image; (c) modulus of the Fourier transform of the
isolated stripes from the first image; (d) Fourier mask obtained
by thresholding and smoothing (c). (e) to (g) are the same as
(b) to (d) but for the second image.
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Figure 8. Fourier phases. (a) Fourier phase of the object;
(b) upsamples phase from the area in (a) outlined by the square;
(c) Fourier phase of the striped output image; (d) upsampled
phase from the area in (c) outlined by the square. The (u, v)
zeros of the complex Fourier transforms are reversed in the areas
enclosed in squares in (b) and (d).
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Figure 9. Locations of the zeros of the real part (dark lines) and
the imaginary part (white lines) of the Fourier transform of the
object. The object was translated to be causal and the area of its
Fourier transform shown here is that shown in Figure 8(b).
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Abstract

The uniqueness of the phase retrieval problem - the reconstruc-

tion of an object from the modulus of its Fourier transform - has

been debated in recent years. Experimental reconstruction results

are shown which support the theory that two-dimensional phase

retrieval is usually unique. It is also shown that uniqueness in a

practical sense is not destroyed by noise in the Fourier modulus

data.
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1. INTRODUCTION

The phase retrieval problem considered in this paper is the

reconstruction of an object function, f(x, y), from the modulus,

IF(u, v)t, of its Fourier transform

F(u, v) - IF(u, v)J exp [i*(u, v)] = ' j[f(x, y)]

a Jf ff(x, y) exp [-i2i(ux + vy)] dx dy (1)

It is equivalent to the reconstruction of the Fourier phase, 4,(u, v),

from the Fourier modulus and to the reconstruction of f(x, y) or

*I(u, v) from the autocorrelation function

r(x, y) - CJ-lI[ F(u, v), 2] . (2)

This problem arises in several disciplines including optical and

radio astronomy, wavefront sensing, holography, and remote sensing.

There are the omnipresent ambiguity that the object, f(x, y), any

translation of the object, f(x - x0, y - yo), the twin image,

f *(-x - X0, -y - yo), and any of these multiplied by a constant

of unity magnitude, exp [i c], all have exactly the same Fourier

modulus. These ambiguities change only the object's position or

orientation, not its appearance. If they are the only ambiguities,

then we refer to the object as being unique. A solution is con-

sidered to be ambiguous only if it differs from the object in ways

other than these omnipresent ambiguities.

If nothing is known about the object, then reconstruction from

its Fourier modulus is generally ambiguous except for very special

cases. Fortunately, for many applications one has additional a

priori knowledge about or constraints on the object. In the

astronomy application, for example, the object's spatial brightness

distribution f(x, y) is a real, nonnegative function. For several

applications, one has a support constraint, i.e., the object is
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known to be zero outside some finite area. Even if the support

constraint is not known a priori, upper bounds can be placed on the

support of the object since it can be no larger than half the

diameter of the autocorrelation along any direction. Additional

measurements or other forms of a priori information may be available

for specific applications, but in this paper we will restrict our

attention to nonnegativity and support constraints in the object

domain since they occur most frequently in real-world applications.

Until about a decade ago, there was much pessimism that the phase

retrieval problem could be solved or that the solution would be

useful, because the one-dimensional theory of analytic functions

available at the time indicated that there were ordinarily an

enormous number of ambiguous solutions [1-3].

The first indications that the 2-D case is usually unique,

despite the lack of uniqueness in one dimension, came from empirical

reconstruction results [4, 5]: images that were reconstructed

resembled the original simulated objects used to compute the Fourier

modulus data. Those results gave hope that 2-0 phase retrieval

problems might be solvable and unique. (Other phase retrieval

problems, such as in electron microscopy where one has squared-

modulus measurements in each of two domains [6] or in x-ray crystal-

lography where one has the a priori information that the object

consists of a finite collection of atoms [7], had been solved; but

those earlier successes depended upon much greater object-domain

constraints than just nonnegativity and support.) Those empirical

results gave impetus to attempts to extend the 1-D theory to 2-D.

Although progress has been made [8-13], the level of understanding

of the 2-0 problem has not yet matched that of the 1-0 problem.

One of the most enlightening developments has been the work of

Bruck and Sodin [14], which modeled the object distribution as an

array of delta functions on a regular grid. The Fourier transform
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can then be expressed as a polynomial of two complex variables, and

the presence of ambiguity in the phase retrieval problem is equiva-

lent to the factorability of the polynomial. This explains the vast

difference between the l-D and the 2-D cases, because polynomials (of

degree two or greater) of a single complex variable are always

factorable whereas polynomials of two (or more) complex variables are

rarely factorable [14-16]. Other interesting results have been

obtained by exploiting this discrete model. Fiddy, Brames and Dainty

[17, 18] described an object support that, by virtue of Eisenstein's

irreducibility theorem, guarantees uniqueness. Brames [19] showed

that any discrete object having a support whose convex hull has no

parallel sides is unique among objects with the same convex hull; so

if the convex hull of the support of such an object is known a

priori, then it is unique. For these cases, there also exists a

closed-form recursive reconstruction algorithm [20, 21].

These results for discrete objects are not the entire story,

however, for two important reasons. First, if a given nonfactorable

polynomial is near enough (in an integrated mean-squared difference

sense, relative to the amount of noise present in the data) to a

factorable polynomial, then the ambiguous solutions will be

consistent with the noisy Fourier modulus data. It is not presently

known how close an arbitrary polynomial is, on the average, to a

factorable polynomial. Second, most real-world applications are for

continuous objects, and the discrete (sampled) model used by Bruck

and Sodin, although it has led to valuable insights, does not capture

all the important features of the continuous real world. The

uniqueness results for discrete objects do not necessarily have

analogs in the continuous world. Two things that can be said of the

continuous case are that objects known to satisfy the holography

condition [22] are unique, and objects known to consist of separated

parts are likely to be unique [23-25].
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Whether discrete or continuous, it is easy to make up cases that

are ambiguous. If g(x, y) and h(x, y) are two functions of finite

support with Fourier transforms G(u, v) and H(u, v) respectively,

then the convolutions

fl(x, y) = g(x, y) * h(x, y) (3)

and

f2 (x, y) = g(x, y) * h*(-x, -y) (4)

are different objects as long as neither g nor h is centrosymmetric,

and they have Fourier transforms

F,(u, v) = G(u, v)H(u, v) (5)

and

F2 (u, v) = G(u, v)H*(u, v) (6)

which have the same modulus,

IFl(u, v)I = IF2 (u, v) = IG(u, v)I IH(u, v)I . (7)

By this convolutional (products in the Fourier domain) method, it is

possible to make up an uncountably infinite number of amibiguous

cases even though the theory indicates that ambiguity is rare in 2-D.

Thus, the fact that the probability of any given object being

ambiguous (the Fourier transform being factorable) is zero is not

necessarily comforting. Consider that it is also true that any

randomly chosen real number has probability zero of being a rational

number (almost all are irrational numbers). Yet any real number,

even if irrational, can be approximated arbitrarily well by a

rational number.

There is concern that if a given object is close enough to an

ambiguous object, then the given object may be unique in theory but
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ambiguous in practice. The existence of ambiguous objects close to a

given object is likely to cause the existence of local minima in

which iterative reconstruction algorithms will become trapped.

Current theory has not adequately addressed this question even for

the discrete model.

In this paper, partial answers to two of the uniqueness

questions are given by means of computer simulations and reconstruc-

tion experiments. In Section 2, evidence is given that an interest-

ing class of objects are in practice usually unique, and in Section 3

evidence is given that adding noise to the data does not alter that

conclusion.

2. UNIQUENESS EXPERIMENTS

One approach to determining whether most objects of interest can,

in practice, be uniquely reconstructed from their Fourier moduli is

to computer simulate the Fourier moduli for a number of objects of

interest and attempt to reconstruct them from their Fourier moduli

using a phase retrieval algorithm. This approach is possible due to

the existence of a practical phase retrieval algorithm, the iterative

Fourier transform algorithm [4, 26-28].

The iterative transform algorithm uses the available data, an

estimate (possibly noisy) of the modulus of the object's Fourier

transform and the available object-domain constraints. For the

astronomy problem, the constraint on the object is that it is

nonnegative. In addition, from the Fourier modulus, one can compute

the autocorrelation of the object from which one can place upper

bounds on the support of the object (only in special cases can the

support of the object be determined from the support of its

autocorrelation) [29]. The iterative transform algorithm involves

the repeated application of data and constraints in the Fourier and

object domains. It is described in greatest detail in Reference 28

and has numerous applications in addition to phase retrieval [30].
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If there are multiple ambiguous solutions, then the iterative

transform algorithm is likely to find any one of them, depending on

the random numbers used as the initial estimate. In one series of

tests for a case that was made up to have two ambiguous solutions,

out of ten reconstructions, each using a different random initial

estimate, four converged to one of the two solutions and six

converged to the other. In another series of tests for a case that

was made up to have four ambiguous solutions, in each case that the

algorithm converged, it converged only to one of the four solutions,

and it converged to each of the four solutions at least once [31].

Hence, it is felt that if the iterative algorithm is run several

times, each time using a different random initial estimate, and if it

converges to the same solution each time, then it is highly likely

that the solution is unique.

In an earlier study [32], the Fourier transforms of several

different pictures of satellites were computed, the Fourier trans-

forms were weighted by the MTF due to a circular aperture to include

the effects of diffraction, and images were reconstructed from the

moduli of the weighted Fourier transforms. The results of this set

of experiments were very encouraging, but they were less conclusive

than what was desired since the algorithm has a tendancy to stagnate

in a certain mode. By stagnation, it is meant that the algorithm

gets stuck on an output image that is not a solution, i.e., that does

not agree simultaneously with all the data and constraints. Stagna-

tion can be interpreted as being trapped in a local minimum of an

error metric. The mode of stagnation most prevalent for these types

of objects is that having an output image that resembles the original

object but with a pattern of stripes superimposed [33, 34]. That

this is a point of stagnation rather than (an ambiguous) solution is

readily seen from the fact that the pattern of stripes extends

(although with reduced contrast) beyond the known support of the

object and therefore violates the object-domain support constraint.
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This stagnation problem was a difficulty for several years, but more

recently methods have been developed for overcoming it: the removal

of the stripes by the voting method and by the patching method [35].

With these algorithm improvements, the experiments with the satellite

images were redone, and the results are shown in Figure 1.

Eight digitized photographs of satellites were used. Each was

downsampled to fit within an array of 64 by 64 pixels which was

imbedded in a 128 by 128 array. Each were Fourier transformed (using

the fast Fourier transform) and the complex Fourier transform was

multiplied (weighted) by the autocorrelation function of a circular

aperture of diameter 62 pixels to simulate the effects of diffraction

for incoherent imaging through a circular aperture. Reference

objects were computed by inverse Fourier transforming the weighted

Fourier transform. These reference objects, which correspond to

diffraction-limited images, are shown in Figures l(a), (c), (e), (g),

(i), (k), (m), and (o). The modulus of the weighted Fourier trans-

form was used as the Fourier domain data, and a very loose support

constraint consisting of a 64 x 64 square was employed along with a

nonnegativity constraint. The following sequence of steps were

performed for each object. The initial input to the algorithm was an

array of uniformly distributed random numbers. Twenty error-

reduction iterations, followed by several cycles of one hundred

hybrid input-output iterations (with the feedback parameter s - 0.7)

plus forty error-reduction iterations each, followed by forty more

error-reduction iterations were used to produce an output image [4,

28]. Two more output images were produced in a similar fashion

starting with different random initial inputs. In case there might

be a problem of stagnation with stripes, the three output images were

combined by the voting method [35] and starting from that result

another sequence of iterations like that described above was

performed to produce a fourth output image. For the same reason, the
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first and second output images were combined by the patching method

[35] and the first and third output images were combined similarly.

These two results were then combined by the patching method.

Starting from that result, another sequence of iterations like the

one described above was performed to produce a fifth output image.

The object-domain error metric E0 (defined below) was computed for

each of the five output images described above, and the one with the

lowest error metric, i.e., the one in best agreement with the data

and constraints, was taken to be the solution. The lengthy procedure

and large number of iterations described above would ordinarily be

overkill for this phase retrieval problem, but it was used in order

to ensure a high probability of success using a totally automated

procedure.

The resulting images are shown in Figure 1 next to the respective

reference objects. Table 1 shows the normalized root-mean-squared

error (NRMSE) of each defined by

g'(x, Y)l 2  112

E0 , (xy)CY (8)Ig- (x, Y)(I8

where y is the set of points at which the output image g'(x, y)

violates the constraints (all points outside the 64 x 64 support and

all points within the support at which g' is negative). As shown in

the second column of Table 1, the reference objects have nonzero

error because the simulated telescope MTF causes sidelobes of the

points within the object to extend beyond the support of the object.

Note that the impulse response is a J2(x)/x 2 function. If a

reference object is used as a starting estimate for the iterative

algorithm, it converges to a solution that is more consistent with

the support constraint, but otherwise looks almost identical to the

reference object. The NRMS errors of such images after 21
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iterations of the error reduction algorithm are listed in the third

column of Table 1. One would expect this to approximate the lowest

error metric that any reconstruction algorithm would produce.

Reconstructed images (b), (d), (n) and (p) are visually excel-

lent. Images (b) and (d) even have lower NRMSE than their respective

reference objects (even after the 21 error reduction iterations).

Presumably, this is possible because many more iterations were used

to make the reconstructed images consistent with the support

constraint. Reconstructed images (h) and (1) are in good agreement

with the data and constraints and agree with the reference objects in

gross detail, but they are still plagued by residual stripes that

were not fully removed by the stripe-reducing methods - (h) has

coarse vertical stripes and (1) has a checkerboard pattern of at

least two sets of stripes. Output image (j) has a strong pattern of

residual diagonal stripes and is only in moderately good agreement

with the data and constraints: its NRMSE is 0.236 x 10-2 versus

0.179 x 10-2 that is possible for this case. Nevertheless, image

(j) closely resembles the reference object aside from the super-

imposed stripes. Reconstructed image (f) is the most troublesome.

Despite being in moderately good agreement with the data and

constraints, it does not closely resemble the reference object. Of

this group of images, it is the only one that has a clear uniqueness

problem. The fact that the reference object, shown in Figure l(e),

is nearly centrosymmetric may contribute to the difficulty in

uniquely reconstructing it.

In summary, all but one of the eight reconstructed images appear

to be, practically speaking, uniquely reconstructed. The one case

that clearly suffers from nonuniqueness is a nearly centro-symmetric

object (e-f). Objects that appear to have separated parts (a-b, c-d,

m-n, o-p) were the easiest to reconstruct.

149



3. EFFECTS OF NOISE

Another major concern is the effect of noise on the uniqueness of

the solution. Ordinarily, there is no solution consistent with the

data and constraints when noise is present in the data. The

iterative algorithm is an attempt to find an output image that is as

consistent as possible with the conflicting noisy data and

constraints. Analysis has indicated that the uniqueness condition is

stable in the presence of noise [36]. In this section, experimental

results [33] are reviewed that support that viewpoint.

For this set of experiments, stellar speckle interferometry [37]

was simulated, including the effects of atmospheric turbulence,

photon noise, and averaging a finite number of speckle frames.

Images were reconstructed from the simulated noisy Fourier modulus

data using the iterative transform algorithm.

The object used is that shown in Figure l(o). It is about 64 by

40 pixels in extent imbedded in a 128 by 128 array. It was convolved

with 156 different point-spread functions each simulating a different

realization of the turbulent atmosphere. Figures 2(a) through 2(d)

show four examples of the resulting blurred images. The blurred

images were then subjected to a Poisson noise process to simulate the

effects of photon noise. A variety of noise levels were assumed for

different experiments. The same four blurred images, each with

three different levels of photon noise, are shown in the remainder of

Figure 2. For each photon noise level, the 156 degraded images were

processed by Labeyrie's method [37] using the Goodman-Belsher [38]

modification to suppress a noise bias term to arrive at a noisy

estimate of the Fourier modulus of the object. Four examples with

different photon noise levels are shown in Figure 3. Further details

on the data simulation are available in Reference 33.

Images reconstructed from the noisy Fourier modulus data are
shown in Figure 4. Figure 4(a) shows the diffraction-limited object
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for comparison. When twin images were reconstructed, they were

inverted to allow for easier comparison. The stripe removal methods

were not employed for this series of experiments. The image shown in

Figure 4(e) was reconstructed from the data derived from the case of

305,000 photons per degraded image which was calculated to be the

expected number of photons available for the simulated imaging

scenario. Each successive 3rd image in Figure 4 arose from data

using approxmately one tenth as many photons. Thus, Figure 4(k),

which still has some useful image information, was obtained from only

1(100 the number of photons that could be expected in practice. That

the noisiest case, Figure 4(m), resulted in an unrecognizable image

is what one would expect, since, as can be seen from Figure 3(d),

the Fourier modulus data was so noisy as to be unrecognizable as

well.

The encouraging conclusion derived from these results is that, as

the noise in the Fourier modulus estimate increases, the recon-

structed image degrades in a gradual and predictable manner. That

is, small amounts of noise do not, as was once mistakenly predicted

[39], cause the uniqueness of the solution to suddenly go unstable

and cause radically different images to be reconstructed. On the

contrary, these results give experimental evidence to the stability

predicted more recently [36].

4. CONCLUSIONS

By simulating Fourier modulus data and performing reconstruction

experiments, it has been shown that (1) most images of satellites are

uniquely related to their Fourier modulus and (2) the uniqueness is

stable in the presence of noise. These results should instill

confidence that the solution to the phase retrieval problem by the

iterative Fourier transform algorithm is realistically unique and

noise tolerant in a practical sense, making it useful for real-world

applications.
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TABLE 1

NORMALIZED RMS ERROR METRIC OF REFERENCE OBJECTS AND IMAGES

RECONSTRUCTED FROM FOURIER MODULUS USING THE ITERATIVE

ALGORITHM. Letters in parentheses refer to Figure 1.

All errors are in percents (XO.Ol).

Reference Object Reconstructed Image

Figure 1 NRMSE(1) NRMSE(21) Figure 1 NRMSE

(a) 0.252 0.184 (b) 0.164

(c) 0.468 0.359 (d) 0.310

(e) 0.215 0.194 (f) 0.223

(g) 0.316 0.240 (h) 0.240

(i) 0.210 0.179 (j) 0.236

(k) 0.319 0.207 (1) 0.233

(m) 0.377 0.275 (n) 0.349

(o) 0.386 0.328 (p) 0.576
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Figure 1. Diffraction-limited reference objects: (a), (c), (e),
(g), (i), (k), (m), (o). Respective images reconstructed from the
moduli of the Fourier transforms of the reference objects using
the iterative Fourier transform algorithm: (b), (d), (f), (h),
(j),(1), (n), (p).
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Figure 2. Images of the object shown in Figure l(o) as would be seen
through an optical telescope. (a) - (d) Four images, each blurred by
a different realization of the turbulent atmosphere; blurred images
including photon (Poisson) noise -- number of photons per degraded
images: (e) - (h) 305,000; (i) - (1) 6143; (m) - (p) 643.
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Figure 3. Fourier modulus estimates computed from 156 noisy, blurred
images each. Number of photons per degraded image: (d) infinity (noise-
free), (b) 305,000, (c) 6143, (d) 643.
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Figure 4. (a) Reference object; (b) - (m) images reconstructed from
increasingly noisy Fourier modulus estimates using the iterative
Fourier transform algorithm. Image (e) represents the case of 305,000
photons per degraded image (the realistic case), (j) 6143 photons, and
(m) 643 photons.
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Appendix E

RECONSTRUCTION OF A COMPLEX-VALUED OBJECT FROM THE
MODULUS OF ITS FOURIER TRANSFORM USING A SUPPORT CONSTRAINT

J.R. Fienup

To appear in the Journal of the Optical Society of America A
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Appendix E

Reconstruction of a Complex-Valued Object from the

Modulus of Its Fourier Transform Using a Support Constraint

J. R. Fienup

Environmental Research Institute of Michigan

P.O. Box 8618, Ann Arbor, MI 48107

ABSTRACT

It is shown that, using the iterative Fourier transform algorithm,

it is possible to reconstruct a complex-valued object from the modulus

of its Fourier transform (i.e., solve the phase retrieval problem) using

a sufficiently strong support constraint. Sufficiently strong support

constraints include certain special shapes and separated supports.

Reconstruction results are shown Including the effect of tapered edges

on the object's support.

To appear in the Journal of the Optical Society of America A
(January 1987).
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1. INTRODUCTION

In a number of disciplines, including astronomy, x-ray

crystallography, electron microscopy and wavefront sensing, one

encounters the phase-retrieval problem. One wishes to reconstruct

f(x,y), an object function, from IF(u,v)l, the modulus of its Fourier

transform

F(uv) - IF(u,v)I exp E14(u,v)3 - [f(x,y)J (1)

where g denotes Fourier transform. Since the autocorrelatlon of the

object can be computed from the Fourier modulus by CJ_1 [IF(uv)12], this

problem is equivalent to reconstructing an object from its

autocorrelation.

For successful reconstruction to be possible, one must have

sufficiently strong a priori information (constraints) about the object

to make the solution unique. Of course, one has the omnipresent

ambiguities that f(x,y), exp(ie c)f(x-x O, y-yo ) , and exp(ioc)f*(-x-x O,

-y-yo), where i is a constant phase, all have the same Fourier modulus.

If these omnipresent ambiguities (phase constant, translation, and

conjugate Image) are the only ambiguities, then we consider the phase

retrieval problem to be unique, and do not refer to these ambiguities as

ambiguities. For most problems of Interest (x-ray crystallography being

a notable exception) the object function has finite support. (The

support is the set of points over which the object Is nonzero.) For the
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case of 2-D sampled objects of finite support the solution is almost

always unique (when no noise is present).1 '2  Also for 2-D continuous

objects the solution is probably almost always unique, but the situation

is less clear.
3'4

The support of the object appears to play the most important role

in determining whether the solution Is unique. In 1-D the solution is

almost always unique if the object Is known to have support consisting

of at least two disjoint parts satisfying a separation condition,
5

despite the fact that t I-D case is usually not unique.6 Therefore,

one would expect the likelihood of ambiguity In the 2-D case to be lower

for objects having supports known to have sufficiently separated parts.

For some special supports the solution can be shown to be absolutely

unique as opposed to "almost always unique.* Objects including

reference points known to satisfy the holography condition are unique.

Sampled objects consisting of a rectangular region of support plus a

point off one corner of the rectangle (for which one neighboring corner

is non-zero) can be shown to be (absolutely) unique.7 -9 In addition,

sampled objects known to have triangular support (with non-zero corners)

and some other shapes including latent reference points are unique.9

Recently this has been generalized to show that all sampled objects

having supports whose known convex hulls are polygons having no parallel

sides are unique 10'11 Another class of unique objects are those

consisting of collections of delta functions with separations not

satisfying certain redundancy conditions. 12 The library of supports for
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which the solution is known to be unique Is growing as we learn more

about this important constraint.

Successful reconstruction requires, in addition to a likelihood of

uniqueness, a phase retrieval algorithm that is not overly sensitive to

noise and that converges to a solution using a reasonable amount of

computer time. The most widely used phase retrieval algorithm

satisfying these requirements is the Iterative Fourier transform

algorithm. 1 3 "1 6  A descendent of the Gerchberg-Saxton type of

algorithm, 17 "19 it involves the transformation back and forth between

the Fourier domain, where the Fourier modulus data is applied, and the

object domain, where the a priori object constraints are applied.

For the astronomy problem the only a priori constraint is the

object's nonnegativity. Since the autocorrelation of the object can be

computed from I F(u,v)l, one also knows the support of the

autocorrelation. For extended objects, from the support of the

autocorrelation one can usually determine only upper bounds on the

support of the object. 12 Therefore, the object domain constraints are

nonnegativity and a loose support constraint. These constraints have

been sufficient to reconstruct a number of computer-simulated

astronomical-type objects, 13'14'20'21 even in the presence of a

considerable amount of noise.
22'9'15

In this paper we show that the iterative Fourier transform

algorithm is also capable of reconstructing a complex-valued Image from

Its Fourier modulus using only a support constraint if the support of
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the object is sufficiently well known (is sufficiently tight), is

sufficiently sharp (the object's edges are not tapered too much) and is

one of several interesting types.

2. ITERATIVE FOURIER TRANSFORM ALGORITHM

For the problem under consideration in this paper it is assumed

that IF(u,v)l has been measured and the support, S, of f(x,y) is known.

The object f(x,y) may be real (nonnegative or bipolar) or may be complex

valued.

The kth iteration of the iterative Fourier transform algorithm

applied to this problem consists of the following four steps. (1) An

input image, gk(xy), is Fourier transformed yielding Gk(uv) =

IGk(uv) I exp Eik(uv)]; (2) a new Fourier-domain function Is formed

using the known Fourier modulus IF(u,v)I with the computed phase:

Gk (u,v) - IF(u,v)I exp [i k(u,v)]; (3) Gk (uv) is inverse Fourier

transformed to yield gk'(x.y); (4) a new input Is formed by

II

gk (xY). (x,y)ES

gk+ l(xty) ' (2)

gk(x'y)-$~gk' (xly), (x,y)'S

where $ is a constant usually chosen to be anywhere between 0.5 and 1.0

(the performance of the algorithm is not highly sensitive to the choice

of the feedback parameter a15). Step (4) above embodies the hybrid

input-output version of the Iterative algorithm, which has been most

successful for other phase retrieval problems. 15 The error-reduction
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version of the iterative algorithm (which most closely follows the

Gerchberg-Saxton philosophy) replaces Step (4) with

gklX.y), (xy)ES

gk+l(x'Y) - (3)

O, (x,y)4S.

Other versions of the iterative algorithm are applicable as well.
15

Progress of the algorithm can be monitored by the object-domain

error metric, a normalized root-mean-squared (nrms) error (the amount by

which the output image violates the object-domain constraint):

19k. '(x,YH12 112
E -k (Xy)eS 2 (4)Ok \Y IZ> (x,)I2

When using the error-reduction algorithm it is also appropriate to look

at the Fourier domain error metric

Gk(uv)I ,  IF(uv)1

E ~ FkE F(u, v)J 2 (5))
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The error-reduction algorithm can be proven to converge In the weak

sense that
15

EF(k+l) - Eok <_ EFk , Eo(k.l). (6)

Nevertheless, the error-reduction algorithm is usually much less

effective than the hybrid input-output algorithm for which there Is no

convergence proof. 15 The error-reduction algorithm can be used in

conjunction with the hybrid input-output algorithm in order to get a

better reading of the residual error during the Iterations.
1 5

Furthermore, when the reconstruction problem is particularly Neasyn,

then even the error-reduction algorithm can perform adequately. The

error-reduction algorithm is the same as the projection-onto-sets

algorithm 2 3 ,24 for this problem; however, the modulus constraint in the

Fourier domain is nonconvex and so the error-reduction algorithm does

not enjoy the strong convergence properties of projection onto convex

sets.

Note that Step (3) of the algorithm can be expressed as

Gk'(u,v) - Gk(uv) [IF(uv)I/IGk(uv)1]. (7)

This form can be used instead of the form given in Step 2 above, but it

obviously has a problem wherever Gk(u,v) = 0. This problem has always
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been easily solved either by using

G k'(uv) - Gk(uv) CIF(u,v)I/(IGk(uv)l + 6)). (8)

where 6 Is a very small positive constant, or by directly setting

Gk'(Uv) - IF(u,v)I exp [l"k(uv)], where Ok(UV) is the phase of

Gk(uv). This has never caused any difficulties, contrary to

speculation. 
25

3. RESULTS OF COMPUTER EXPERIMENTS

For all the reconstruction results shown, the reconstruction

algorithm employed was the iterative Fourier transform algorithm using

only a support constraint in the object domain. The initial Input to

the algorithm was an array of complex random numbers filling the area of

the known support. In each case, first twenty iterations of the

error-reduction algorithm were performed, then several cycles of

iterations were performed, where one cycle of Iterations is K iterations

(K = 20 or 40) of the hybrid input-output algorithm with feedback

parameter a - 0.7 followed by 10 iterations of the error-reduction

algorithm. Quoted values of E0 are after error-reduction iterations or

after the end of a complete cycle.

Figures 1 and 2 show the results of computer experiments

demonstrating the reconstruction of a complex-valued object from the

modulus of its Fourier transform using only a support constraint and

exploring the importance of a support constraint having separated parts.
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The objects for these experiments were generated from a 64 x 64 portion

of a complex-valued SEASAT SAR image of an area of land. A binary mask

(an array of ones and zeros) was formed to define the desired support

constraint. For the first case the support constraint was a pair of

ellipses separated vertically by a distance greater than the sum of the

vertical widths of the ellipses. This separation condition corresponds

to the I-D separation that makes uniqueness likely.5 If this separation

condition holds, then, within the complete autocorrelation of the

object, the cross-correlation of the two ellipses does not overlap the

autocorrelations of the individual ellipses. The complex-valued object,

the modulus of which is shown in Figure l(a), was formed by multiplying

the SEASAT SAR image by the binary mask. The modulus of its Fourier

transform, shown in Figure 1(c), was computed from the object imbedded

in a 128 x 128 array. This imbedding is done in order to avoid aliasing

in the computation of JF(u,v)l The modulus of the complex-valued image

reconstructed by the iterative Fourier transform algorithm using the

Fourier modulus and the support constraint is shown in Figure l(b). The

reconstructed image is essentially perfect, both in modulus and in phase

(not shown), up to an additiv" constant phase. Figure 2, curve 1, shows

the object domain nrms error o , given by Eq. (4), as a function of

iteration number. The output image looked excellent (visually

indistinguishable from the original object) after the second cycle of

itrrations (120 total iterations). By iteration 820, E bottomed out

at 3 x 10-8, presumably limited by roundoff error. In practice with
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noise-free data one would ordinarily stop the iterations once Eo dropped

below, say, 0.001.

Figures l(d), l(e), and l(f) show the moduli of the object, the

reconstructed image, and the Fourier transform, respectively, for a

second case, for which the support is two larger, more closely-spaced

ellipses not satisfying the separation condition of Reference 5. Again

the reconstructed image is excellent, but a larger number of iterations

were required to achieve an excellent output image (220 Iterations,

although it was very good by 170 iterations) than for the first case.

This can be seen from iterations 120 and 170 of Figure 2, curve 2. Eo

continued to decrease by about a factor of two every 100 Iterations and

was 6 x 10. 6 by iteration 1020.

Figures l(g), 1(h), and 3(1) show the moduli of the object, the

partially reconstructed output image after 1020 iterations, and the

Fourier transform, respectively, for a third case, for which the support

is contiguous, formed by the union of two overlapping ellipses. As seen

from E shown In Figure 2, curve 3, this output image does not agree

exactly with the constraints and is not a solution. (Note that for this

case E is lower than it was for iteration 120 of the first case, for

which the reconstruction was excellent. From case to case E is often

poorly correlated with how close the output image is to the original

object -- it is only a measure of closeness to agreement with the data

and constraints.) The algorithm was converging very slowly and was

stopped before a solution was found. The quality of the partially
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reconstructed image is very poor, although it does have some of the

features of the object. This type of object appears to be much more

difficult to reconstruct than one with separated support.

Figures 1(j), l(k) and l(l) show the moduli of the object, the

reconstructed image, and the Fourier transform, respectively, for a

fourth case, for which the support is donut-shaped with an off-center

hole. Although the support is contiguous, the number of iterations

required for convergence, as shown in Figure 2, curve 4, is similar to

that of the objects having separated support. The output Image looked

very good by iteration 120 and excellent by iteration 170. By iteration

1020, E had decreased to 1.5 x 10" . It is interesting to note that

along any l-D cut through the center of the object the support does have

two separated parts.

Not shown is a fifth case for which the support was a single

ellipse--the larger of the two ellipses shown in Figure l(d). Similar

to the third case above, the reconstruction was unsuccessful after

several hundred iterations. For this case E is shown in Figure 2,

curve 5.

The results of Figures 1 and 2 demonstrate that having a support

constraint consisting of (at least) two separated parts makes the

reconstruction of the object by the iterative Fourier transform

algorithm much easier than when using only a simple connected support

constraint.

174

.



The power of the separated support might arise from its

holographic-like properties. If one of the separated parts Is

point-like and sufficiently separated from the other parts, then it acts

like a holographic reference point and the object can be easily

extracted from its autocorrelation. 2 6'27  Latent reference points not

satisfying the holography condition may also be used for some special

cases. 9  One thing that a holographic reference point does is to encode

the phase of the Fourier transform in a fringe pattern. For example,

the object

f(x,y) - A6 (x-xoy) + fllX,y) (9)

has Fourier transform

F(u,v) = A exp (-12Trux 0 ) + FI(uv) (10)

where Fl(uv) - JFl (u,v)j exp [Eil(uv)] =([fl(x,y)].

Its squared Fourier modulus is

IF(u,v)I2 _ IA exp (-i2irux0) + F1(u,v)j
2

= IA12 + I F1(u,v)12 + 2 Al I F1(u,v)j cos [27Tux 0 + 1l(U'v)1l

(11)
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For separation x0 sufficiently large compared with the width of the
object, one can see the cos [ I fringe in IF(u,v)1 2 , and the spatial

modulation of that fringe by the phase ,(u,v) gives an Indication of

the phase. If x° satisfies the holography condition, then f(x,y) is

trivially obtained by spatially filtering the autocorrelation function,

which is given byg'l [lF(u,v)I2]. From this it is seen that the phase

P1(u,v) is obtained by taking the phase of IF(u,v)1 2 filtered by a

single-sided bandpass filter.

For the problem under consideration one does not have holography

since neither of the separated parts f0(x,y) and fl(x,y) of

f(x,y) = fo(X,y) + f1(xy)

is necessarily a delta-function, nor is the separation necessarily large

enough to satisfy the holography condition. (Furthermore, latent

reference points9 do not necessarily exist.) Nevertheless, with

sufficiently separated parts one still does see a fringe-like structure

In JF(u,v)J 2 . As one departs further from the holography condition,

both in terms of separation and in the greater extent of the smaller of

the two parts, the fringes degrade into a speckle pattern, as seen by

comparing Figures 1(c), 1(f) and 1(i). With a departure from the

holography condition, the ability to decipher the phase from the

degraded fringes diminishes. From the results shown in Figure 1 it

appears that the iterative Fourier transform algorithm performs
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especially well when the Fourier modulus data has any of the fringe

structure described above, even when the fringes are substantially

degraded.

Note that the supports were chosen to be non-centrosymmetric

(except in the fifth case). This was done in order to avoid a potential

stagnation problem that can occur for centrosymmetric supports since in

this case f*(-x-xO , -y-yo) Is consistent with the support constraint as

well as having the same Fourier modulus as f(x,y). As the iterations

progress, the partially reconstructed image g'(x,y) may possess features

of both f(x,y) and f*(-x-xo , -y-yo). It may be unable to move away from

one of those equally valid solutions toward the other, and may stagnate

in this condition. We have developed methods for overcoming this

problem,16'2 1 but reconstruction remains easier for non-centrosymmetric

supports.

Figure 3 shows the results of computer experiments demonstrating

the importance of the sharpness (or tapering) of the edges of an object.

Figure 3(a) shows an object having triangular support and nonzero values

in its three corners. These conditions ensure that the object is unique

among objects having that support, and under these conditions there Is a

closed-form recursive algorithm for reconstructing it.9 For the present

experiment, the image, shown in Figure 3(b), was reconstructed using the

iterative Fourier transform algorithm (rather than the recursive

algorithm). Nonnegativity was not used as a constraint although the

object happens to be nonnegative. In this case the algorithm converged
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rapidly to the solution.

Another example of the ability to reconstruct an object with this

type of support constraint using the iterative Fourier transform

algorithm is shown in Reference 28. There the object was a pure-phase

wavefront transmitted through a triangular aperture.

Since the recursive reconstruction algorithm and the uniqueness

proof require the three corners to be nonzero, we wanted to determine

the Importance of nonzero corners to the iterative Fourier transform

reconstruction algorithm. The same experiment was performed for the

object shown in Figure 3(c), which is identical to the object shown in

Figure 3(a) but with the corners zeroed out. The support constraint

used in the iterative algorithm was the same triangular support as for

the case above. The reconstructed image, shown in Figure 3(d), is the

correct solution, but convergence was slower in this case than for the

case of the object having three bright corners. Therefore, the

brightness of the corners has an effect on convergence, but is not

crucial as far as the iterative algorithm is concerned (they are crucial

to the success of the recursive algorithm).

The effect of the sharpness of the edges of the object was also

investigated. A third object having tapered edges, shown in Figure

3(e), was formed by multiplying the object shown in Figure 3(c) by a

tapering function along each of its three edges. Thus this third object

has the same triangular support as the other two cases described above,

but it has small values near the edges of the support. An attempt was
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made to reconstruct the image from its Fourier modulus using the

iterative Fourier transform algorithm employing the triangular support

constraint. The output image resulting after several hundred iterations

is shown in Figure 3(f). Although the image is easily recognizable, it

has a noisy appearance. It does not represent a solution since it is

not in perfect agreement with the data and constraints. The algorithm

was stagnating and the iterations were halted before a solution was

found. This example shows that, if one does not use a nonnegativity

constraint, then the sharpness of the edges of the object Is very

important to the ability of the iterative algorithm to reconstruct an

image using only a support constraint In the object domain.

4. CONCLUSIONS

Previously It had been shown that by the iterative Fourier

transform algorithm one could reconstruct a nonnegative object from the

modulus of its Fourier transform employing a loose support constraint.

In general the reconstruction of complex-valued objects is considerably

more difficult than for real-valued, nonnegative objects. 29 The results

shown here demonstrate the ability to reconstruct complex-valued objects

if one has a tight enough support constraint that Is one of a number of

special types of support constraints. These special types of support

constraints include supports having separated parts and supports for

which the object can be reconstructed by the recursive algorithm using

latent reference points; this latter class of objects includes objects

with supports whose convex hulls have no parallel sides. One would
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expect to be able to find other supports as well for which the iterative

Fourier transform algorithm performs successfully. Simple symmetric

support constraints such as single ellipses (circles) or rectangles do

not work well. The algorithm also works much better for objects having

sharp edges than for objects having tapered edges. Further research is

being performed to examine in more detail the effects of the shape of

the support, the amount of edge tapering, and the presence of noise on

the ability to reconstruct a complex-valued object from the modulus of

Its Fourier transform using only a support constraint. Portions of this

work were reported In References 21, 30 and 31.
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Figure 1. Examples of reconstructing complex-valued objects from the
moduli of their Fourier transforms using a support constraint. (a),
(d), (g), (j): moduli of the complex valued objects each having a
different support; (b), (e), (h) and (k): the moduli of the images
reconstructed using the iterative Fourier transform algorithm from
the corresponding Fourier moduli, shown in (c), (f), (i) and (1).
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Figure 2. Error Eo as a function of iteration number for reconstruction
examples. Curve 1 corresponds to the case of Figure l(a), (b), (c);
curve 2 to Figure l(d), (e), (f); curve 4 to Figure 1(j), (k), (1);
curve 5 to the case of the object being just the larger ellipse in
Figure l(d).

187



Figure 3. Examples of reconstructing objects from the moduli of their
transforms using a triangular support constraint. (a) Object with
sharp edges and bright corners, (b) reconstructed image; (c) object
with sharp edges and zeroed corners, (d) reconstructed image; (e) object
with tapered edges and zeroed corners, (f) partially reconstructed image.
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Appendix F

PHASE RETRIEVAL USING BOUNDARY CONDITIONS

J.R. Fienup

Reprinted from the Journal of the Optical Society of America A 3,
284-288 (February 1986).

189



Reprinted from Journal of the Optical Society of America A. Vol. 3, page 284. February 1986
Copyright 0 1986 by the Opiical Society of America and reprinted by permission of the copyright owner.

Phase retrieval using boundary conditions

J. R. Fienup

Environmental Research Institute of Michigan, P. 0. Box 818, Ann Arbor, Michigan 48107
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It is shown that a priori knowledge of the edges of an object is not sufficient to ensure that it can be uniquely
reconstructed from the modulus of its Fourier transform (or from its autocorrelation function). Furthermore, even
in those cases for which the ultimate solution is unique, in intermediate steps in the solution by the recursive
Hayes-Quatieri algorithm there can be ambiguities. An extension of the recursive algorithm that finds the solution
(or solutions) is suggested, and it is shown that the recursive method can be applied to complex-valued objects.

INTRODUCTION Several phase-retrieval algorithms have been demonstrat-

In a number of disciplines, including astronomy, x-ray crys- ed, all of them requiring some additional measurements or

tallography, electron microscopy, and wave-front sensing, constraints on the solution. Examples include a reference
oneaeounteroe phase-retrieva probe.fon smesng, point at least one object-diameter from the object 2 (givingone encounters the phase-retrieval problem. One wishes to rise to the holography condition 3), a second intensity mea-reconstruct f(m, n), an object function, from IF(p, qX, the surement in another plane"5 (in electron microscopy or
modulus of its Fourier transform, where wave-front sensing), nonnegativity and limited spatial ex-

F(p, q) IF(p, q)Iexp[i#(p, q)] - 7Vf(m, n)] tent6 .7 (in astronomy), just limited spatial extent,8 atomic
P-1 Q-1 models9 (in x-ray crystallography), objects consisting of col-

f(m, n)exp[-i2r(mp/P + nq/Q)I, (1) lections of points having nonredundant spacings, 0 and ob-
M-0 ,-o jects having latent reference points" (not satisfying the ho-

lography condition). For some of these situations there is a
where m,p f0, 1,..., P- landn, q 0, 1,..., Q-1. The proof of uniqueness of the solution that relies on the types of
discrete transform is employed here since in practice one measurements made. on the a priori information available,
deals with sampled data in a computer. The problem of or on the nature of the reconstruction algorithm itself.
reconstructing the object from its Fourier modulus is equiv- Another proposed phase-retrieval algorithm is the Hayes-
alent to that of reconstructing the Fourier phase 4(p, q) from Quatieri (H-Q) recursive algorithm, which relies on a priori
the Fourier modulus, since once one has the phase as well as knowledge of the boundary conditions (i.e., the values of the
the modulus, one can easily compute f(m, n) by the inverse edges of the object). 12.13 The purpose of this paper is to
(discrete) Fourier transform (hence the name phase-retriev- clarify the uniqueness questions pertaining to the H-Q re-
al problem). r(m, n), the (aperiodic) autocorrelation of f(m, cursive algorithm and to suggest a revised algorithm that
n), is given by' finds the solution (or solutions) when the H-Q algorithm

M-1 N-1 fails. The algorithm may also be applied to complex-valued
r(m, n) = I ' f(j, k)f*(j - m, k - n) (2) objects. It is also pointed out that by the approach of using

-0 k-o" latent reference points," special classes of objects can be
shown to be unique for both real-valued and complex-valued

U-1 N-1 objects.f- (j, k)fuj + rn, k + n) (3)
,-0 k-0 AMBIGUITY USING BOUNDARY CONDITIONS
7 [f IF(p, q)1%, (4) In Refs. 12 and 13 the H-Q recursive algorithm was put

where the asterisk denotes a complex conjugate and where it forward for reconstructing an object from the modulus of its
is assumed that f(j, k) = 0 for m outside [0, M - 11 and for n Fourier transform, through the autocorrelation function, us-
outside [0, N - 11. Note that, when simulating data, in ing boundary conditions, i.e., assuming knowledge of the
order to avoid aliasing in the computation of IF(p, q)A2 it is edges of the object. A real-valued object, i(m. n), was as-
necessary that M <5 P/2 and N 5 Q/2. Since the autocorre- sumed to be zero outside the rectangular region of support 0
lation function is easily computed from the Fourier modulus -< m _S M - I and 0 5 n < N - 1. The top and bottom
by Eq. (4), the phase-retrieval problem is equivalent to re- nonzero rows, 0(m) - f(m, N - 1) and a(m) - ((m, 0),
constructing an object from its autocorrelation function. respectively, and the leftmost and rightmost nonzero col-
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umns, fO, n) and #M - 1, n), respectively, are assumed to be 2 3 3 3 I 2 3 3 3 1
known a priori. Rows 1 and N - 2 can then be determined
by solving a system of 2M - 1 linear equations in 2M - 4 3 7 4 A 2 3 3 6 6 2
unknowns. From Eq. (3) we have, for n - N - 2, the second
from the top row of the autocorrelation: 3 6 S 4 2 3 4 5 6 2

.W- I N-1 1 2 2 2 1 1 2 2 2 1
r(m, N- 2)- 1- f*(j, k)f(j + m, k + N -2)j-0 k-0 (a) Mb

M-i

If *(j, O)f(j + m, N - 2)

j-0 2 7 13 19 21 17 11 5 1

M-I 7 27 52 77 88 73 48 23 S
+- r" (, 1)f(j + m, N -) 9748 1

'+1- 13 52 100 153 179 147 97 48 11

M-1 15 63 123 188 230 188 123 63 15

I - (j ) f ( i + m N - 2 )  
11 48 97 147 179 153 100 52 13

j-0

M-1 5 23 48 73 88 77 52 27 7

+ I.ru(j,1)j+(j+m) 1 5 11 17 21 19 13 7 2
J-0

form , -M + I. M - 1. These are 2M - I equations, (C)
one for each value of m, in 2M - 4 unknowns, f(j, N - 2) and Fig. 1. Example 1. Two different objects, (a) and (b), have the
f(j1), forj-1,2... M-2. Recall that a(j), P(j), f(0, N - same boundary values and also have the same Fourier modulus (not
2), f(M - 1, N - 2). ((0, 1), and f(M - 1, 1) are assumed to be shown) and the same autocorrelation (c).

known. After f(j, N - 2) and f(j, 1) are determined by
solving the system of equations given in Eqs. (5) above, then proportional to f(M - 1 - m), and yet they have the same
one can solve for f(j, N - 3) and f(j, 2) using r(m, N - 3) in a Fourier modulus and the same autocorrelation function,
similar manner. The remaining rows of the object are which is shown in Fig. 1(c). Therefore knowledge of the
solved recursively in a similar manner. boundaries is not necessarily sufficient information for a

The H-Q algorithm described above could work if the unique reconstruction even if the restrictive condition
systems of equations had a unique solution for the un- quoted above is satisfied.
knowns. Restricting the solution to real-valued rs, a claim An infinite number of ambiguous examples such as that
has been made that "It may be shown, however, that a shown in Fig. I can be generated. From the theory of Bruck
sufficient condition for a unique solution ... to exist is that and Sodin 14 it is known that the solution of the phase-
,tim) and W(m) not be identically zero and that a(m) not be retrieval problem [but not necessarily of Eqs. (5)] is unique
related to 3(M - I - m) by a constant scale factor." 12 unless the Fourier transform of the object is a factorable
However, no proof of that statement was provided. In what polynomial, which is unlikely to happen by chance for the 2-
follows, three examples that clarify this situation are given. D case. Factorability of the Fourier transform is equivalent
In the first, the underlying phase-retrieval problem is not to the object's being expressible as a convolution of two
unique, yet the two ambiguous solutions have the same functions, and so ambiguous cases can be constructed by
boundary values that satisfy the conditions quoted above, forming an object by convolving (or cross correlating) two
Therefore we have the unexpected result that, although for functions. 15 The object in Fig. 1(a) was fabricated by cross
two-dimensional (2-D) sampled objects the phase-retrieval correlating the functions shown in Figs. 2(a) and 2(b). The
problem is usually unique to begin with, 14 knowledge of the ambiguous solution shown in Fig. 1(b) is the inverted convo-
boundary values is not sufficient to guarantee uniqueness. lution of the functions shown in Figs. 2(a) and 2(b). An
In the second example, the underlying phase-retrieval prob- infinite number of other examples that are ambiguous even
lem is unique, and the boundary values of the object satisfy if one knows a priori the boundary values (and that satisfy
the conditions quoted above, yet the equations to be solved the condition quoted above) can be obtained by replacing
for the H-Q recursive method do not yield a unique solution, the values 1, 1, 1. and 2 of the function shown in Fig. 2(b) by
contrary to the claim quoted above. An extension of the other values u, x. y, and z, respectively, as long as wz ;d x%.
method that finds the solutions for the first two examples is The H-Q recursive algorithm involves the solution of 2M
given. In the third example, the H-Q algorithm is shown to - I linear equations in 2M - 4 unknowns.' One problem
wvork for a complex-valued object although the method was with this is that for m - -M + I and form A -tl - 1. Eqs. (5)
,originally limited to real-valued ohje't.' 2  involve only the known boundary values and not the un-

knowns. Therefore one really has only 2M - 3 linear equa-
Example I tions in 2M - 4 unknowns to begin with. A second problem
Figures Ila) and I(h. show twit different sampled objects is that on inspection of those equations one finds that. for
ha% ing the -.line Iommdarie,. mnd for hth objects ,,(ini is not the ambiguous cases such as that show in Fig. I. two or more

191

111



286 J. Opt. Smo. Am. A/Vol. 3, No. 2/February 1986 .IOSA Communicalion

1 1 1 1 relation. Since the previous set of equations was underde-
termined, some of this set of equations include terms that

1 2 0 1 1 1 are the products of two unknowns, i.e., some of the equations
are nonlinear. The first two such equations are (after rear-

1 1 1 I 1 2 ranging the right-hand sides)

(a) (b) 52 - 12 + 2a + 2c + d + 3f (8a)

and

2 3 3 3 1 100z 12+4b+3c+2d+4e+af. (8b)

3 a b c 2 Combining Eq. (8a) with Eqs. (7) yields

3 d f f 2 a - 15 - 2b, (9)

1 2 2 2 1 and combining Eq. (8b) with Eqs. (7) and (9) yields

(C) b2 - 10b + 24 - 0 (10a)

Fig. 2. Functions (a) and (b), which generate the object shown in
Fig. l(a) by cross correlation and in Fig. l(b) by convolution. In(c) or
is the general form of the objects that have the autocorrelation
shown in Fig. l(c). b = 4 or 6. (10b)

of them are dependent equations. Since the number of Evaluation of the other unknowns by Eqs. (9) and (7) gives
remaining linear independent equations is fewer than the the two solutions shown in Figs. 1(a) and 1(b). The equa-

number of unknowns, the problem is underdetermined, and tions for the unused points in the autocorrelation are found
to be consistent with both solutions. Note that the steps

multiple solutions exist, described above for solving for the unknowns is a compre-
Consider the particular example of Fig. 1(c), for which one hensive procedure that finds all possible solutions. This

searches for solutions of the form shown in Fig. 2(c), havingthea pior knwnboudar vaue. Te 2 - =7 liea modified approach can be generalized as follows. One per-
the a priori known boundary values. The 2M - 3 -linear forms the H-Q algorithm solving the sets of linear equations
equations of Eq. (5), utilizing the second row of Fig. 1 (c), are such as Eqs. (5), using the suggested pseudoinverse matrix1 2

as follows (after rearranging the right-hand sides): or another method such as Gauss elimination. If the num-

27 - 12 + a + 2f, (6a) ber of independent equations is found to be exceeded by the
number of unknowns, then one adds to the system of equa-

52 - 12 + 2a + b + 2e + 3f, (6b) tions additional (possibly nonlinear) equations for the auto-

77 - 12 + 2a + 2b + c + 2d + 3e + 3f, (60) correlation, using points in the next row of the autocorrela-
tion. More equations are added (possibly using points un-

88 - 13 + 2a + 2b + 2c + 3d + 3e + 3f, (6d) used by the H-Q algorithm) until the solution is unique or

73 - 13 + a + 2b + 2c + 3d + 3e + f, (6e) until all the points in the autocorrelation are used (in which
case one might be left with multiple solutions). This modi-

48 = 13 + b + 2c + 3d + e, (60 fication to the H.Q algorithm may be difficult in some cases
23 13+c+d. (6g) since it involves the solution of a system of nonlinear equa-

tions. Nevertheless, this approach is capable of finding all
Note that Eq. (6d) is equal to Eq. (6c) plus Eq. (6g), Eq. the solutions when multiple solutions exist. It works even

(6e) is equal to Eq. (60 plus Eq. (6b) minus Eq. (.a), and Eq. when a(m) is proportional to 0(M - 1 - m).
(6c) is equal to Eq. (60 plus Eq. (6b) minus Eq. (6g). That
is, of these seven equations, three are dependent, leaving Example 2
only four independent equations in six unknowns. There- Figure 3(a) shows an object identical to that shown in Fig.
fore one can, for example, choose values a and b in Fig. 2(c) 1(a) except that a value of 4 was replaced by a value of 5 in
arbitrarily, and then the values of c, d, e, and f are deter- the fourth column from the left and second row from the top.
mined from Eqs. (6) as follows: Figure 3(b) shows its autocorrelation. As we show below,

this object is uniquely related to its autocorrelation. On
c = (15 - a + 2b)/4, (7a) attempting to reconstruct the object from its autocorrelation

d - (25 + a - 2b)/4, (7b) by the H-Q recursive method using a priori knowledge of the
boundary values, one finds, similar to the case of Example 1.

e - (35 - a - 2b)/4, (7c) using Gauss elimination, that three of the seven linear equa-
f - (15 - a)/2. (7d) tions of Eqs. (5) are dependent, leaving only four indepen-

dent equations in six unknowns. Again one can, for exam-
At this point the H-Q algorithm would have been stopped, pie, choose values a and b in Fig. 2(c) arbitrarily, and then

leaving this ambiguity. An alternative is to continue by the values of c, d, e, and fare determined. At this point the
adding, to the existing set of underdetermined equations, H-Q algorithm would have been stopped, leaving this ambi-
the equations corresponding to the next row of the autocor- guity. Similar to the case of Example 1, an alternative is to
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2 3 3 3 1 real and imaginary parts of the unknowns, one has a system
of 4M - 6 real linear equations in 4M - 8 real unknowns.

3 7 4 5 2 Dealing with the fewer number of equations with complex
values is the simpler method.) In either case, if too many of

3 6 5 4 2 the equations are linearly dependent, then one must resort
to using additional (possibly nonlinear) equations as in the

2 2 2 1 modified H-Q algorithm as described in the previous section.
(a) In Figs. 4(a) and 4(b), a complex-valued object and its

autocorrelation, respectively, are shown (only the left half of
the latter is shown since it is Hermitian). For this example,
Eqs. (5) were solved by Gaussian elimination using complex

2 7 13 19 21 17 11 5 1 coefficients and the solution (the object) was found to be
unique.

7 27 52 78 90 75 50 24 5

13 54 103 158 186 153 103 51 11 SOME UNIQUE CASES

15 66 130 194 239 194 130 66 15 Despite the phase-retrieval problem's not being unique, as
demonstrated in Example 1 in the previous section, there are

11 51 103 153 186 158 103 54 13 some specific classes of objects for which the solution is
known to be unique. These unique objects have supports

5 24 50 75 90 78 52 27 7 (or shapes) of special types.
Certain classes of objects having latent reference points

1 5 11 17 21 19 13 7 2 can be reconstructed using a simpler recursive algorithm
W than the one described in the previous section. The simpler
b ) recursive algorithm"t selects the order in which the equa-

autocorrelation function (b). For this example Eqs. (5) do not have tions are solved such that at each step one must solve only aFig. 3. Example 2. An object (a), which is uniquely related to its tinarsovducthttechtpoemstolenya
a unique solution. single linear equation for a single unknown, which is a trivial

computation that always gives a unique result. It is re-
carry on and continue to solve for the six unknowns using the quired that no division by zero be allowed, and this is en-
equations for the next row of autocorrelation. Then one sured by the requirement that the values of the latent refer-
arrives at only one consistent solution, equal to the original ence points not be zero. The latent reference points act in a
object shown in Fig. 3(a). similar manner to reference points for holography, but they

Since the modified procedure described above finds all do not initially satisfy the holographic separation condition.
possible solutions having the given boundary values, and
since only a single solution was found, the object shown in 1 + 0i 1 *i 2-i -3 +2i 0-i
Fig. 3(a) is the unique solution.

An infinite number of such examples can be generated. 2-2i 2+2i 1.2i 2+i -1 0i
If. instead of 5, any other value (except 4) had been used for
the fourth column, second row of the object shown in Fig. 1 3i 4 i -2 3i .1-i 1 2i
3(a), then the same behavior as in Example 2 would be 12i 2+2i 0+i 1-i .1.
observed: although the underlying phase-retrieval problem
is unique, the solution to Eqs. (5) is not. (a)

From the examples discussed above it is seen that the H-Q
recursive algorithm, when modified to carry on with un-
known variables as suggested above, is reminiscent of the.
recursive algorithm of Dallas,5 except that Dallas had a tree -1-i Ii -3+0i 11.- -2*0i
of discrete solutions that grew with each recursive step, and
ambiguities were resolved when the tree was pruned in later -3-2i 6.A -9-S 9-91 12-Si
recursive steps. In the present case one must go deeper into •I10i 2-i -4.i 24-22i 9+11i
the autocorrelation function than suggested in Ref. 12 to
obtain enough independent equations to arrive at a solution 2.5i 1.23i 18+7i -17-24i 114.0i
(or solutions).

• 2-5 -4+9i 2-9i 6+7i 9-111
Example 3
In the preceding examples and in Refs. 11 and 12 it was -4-3i 0-14i -3-Si 20-5i 12.51
assumed that the object was real valued. However, the
reconstruction method can be just as well applied to com-
plex-valued objects. Equations (5) simply becomes a sys- (b)
temn of 2M - 3 linear equations having complex coefficients(btef2M - 4 pex-aueuowns . (Avingcomlernati - Fig. 4. Example 3. A complex-valued object (a). which is unique-
in 2M - 4 complex-valued unknowns. (Alternatively, ex- lv related to its autocorrelation function (b). The right half of (b)
pressing the real and imaginary parts of each complex-val- (not shown) is the Hermitian conjugate of the left half (shown). For
tied equation as two separate equations and solving for the this example Eqs. (,5) have a unique solution.
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Abstract

For imaging objects through a turbulent atmosphere, speckle in-
terferoetry traditionally averages the Fourier intensities of many
short-exposure degraded images to generate an estimate of the ob-
ject's Fourier intensity. In this paper a model for the probability
density of the short-exposure Fourier intensities is derived, from
which an iterative procedure is developed which generates the maximum
likelihood estimator of the object's Fourier intensity from the short
exposure images.
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AN ESTIMATOR OF FOURIER INTENSITIES
IN STELLAR SPECKLE INTERFEROMETRY

1
INTRODUCTION

When imaging with a large earth-bound optical telescope, atmo-

spheric turbulence degrades the resolution to approximately one sec-

ond of arc, which is many times worse than the diffraction limit set

by the telescope aperture. This situation can be improved by gather-

ing Fourier intensity (power spectrum) data. Labeyrie [1] showed

that if one takes a number of short-exposure images, one can combine

the intensities (squared magnitudes) of their Fourier transforms to

form an estimate of the object's Fourier transform intensity that

has energy out to the diffraction limit of the telescope. This tech-

nique, known as stellar speckle interferometry, was demonstrated

practically first by Gezari et al. [2] in 1972 and has been in use

since. How to best combine the Fourier intensities of the short

exposure images in order to get an estimate of the object's Fourier

intensity is the subject of this paper. An iterative maximum like-

lihood estimator will be developed based upon a model for the proba-

bility density function of the Fourier intensity data that is calcu-

lated from the short-exposure images.

Let o(a,o) be the intensity distribution of the object we wish

to image, and h(a,o) be a point spread function which includes both

atmospheric and telescope effects. We have then [3, p. 259]

g(*,o) - o(a,o) * h(a,B) (1)

where g(a,o) is the image irradiance we record and * is the convolu-

tion operator. In this paper we are considering only the effects of

atmospheric turbulence and not of noise. Letting upper case letters

represent Fourier transforms of the corresponding lower case letters,

then
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G(u,v) = fJg(d,o)e- i2w(ua+vo) de do

and, from Eq. (1),

IG(u,v)l 2 - Io(uv)12 IH(u,v)1 2  (2)

where H(u,v) is the optical transfer function for the imaging system

which includes the effects of both the atmospheric turbulence and

the telescope. Throughout this paper, the limits of integration are

assumed to be -- to +- unless otherwise noted. Since we record a

number of these Fourier intensities, each having the same contribu-

tion from the object and the telescope but a different contribution

from the atmosphere, we have

IGk(u,v)I 2 _ 1o(uv)1 2 IHk(uv) 2 , k - 1, . .. , N (3)

where the subscript k is used to indicate quantities that change for

each of the N short exposure images.

For a given Fourier plane coordinate, (uov0 ) the N real

values that we have recorded, IGk(uovo)1 2 for k 1 l, . . ., N,

are the data values we need to combine in order to produce an esti-

mate for the real parameter IO(uov 0 )12, the object's Fourier

intensity (power spectrum), which we are trying to estimate.

We will generate an estimator by first deriving, in Section 2,

the probability density function for the squared magnitude of the

optical transfer function, IH(u,v)12 , as a function of position in

the frequency plane, the parameters of the optical system, and the

atmospheric coherence diameter, ro . In Section 3 we will then

derive the density function of the observation IG(u,v)1 2 as a func-

tion of the parameter IO(u,v)1 2 and will describe an algorithm for

generating the maximum likelihood estimator of 1o(u,v)12 from the

observations using this density function. Finally, Section 4 will

have concluding comments.
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2
PROBABILITY DENSITY FOR THE SQUARED MAGNITUDE

OF THE OPTICAL TRANSFER FUNCTION

The optical transfer function, H(u,v), can be written as

[4, p. 404]

ffP(x.y)P*(x - xfu,y - xfv)exp[XI + X2 + l(01-62)] dx dy

f IP(x,y)lz exp [2X] dx dy

where x = the wavelength of the propagating wavefront;

f - the focal length of the optical system;

P(x,y) - the complex pupil function of the optical system;

X, - X(x,y), the amplitude fluctuations caused by the

atmosphere;

X2 = X(x - Xfu, y - Xfv);

61 = 6(x,y), the phase fluctuations, in radians, caused

by the atmosphere;

02 - O(x - Xfu, y - Xfv).

X(x,y) and O(xy) are defined so that an on-axis plane wave with in-

tensity 10, after propagating through the atmosphere, will have the

form exp (X(xy) + iO(x,y)] at the entrance pupil of the optical

system, Jnder the Rytov approximation to the solution of the wave

equation [4, Sec. 8.4.3] (which assumes that the wavefront after

propagating through a turbulent atmosphere can be modelled as a mul-

tiplicative perturbation of a wavefront that propagated through a

constant, non-turbulent atmosphere) X(x,y) and O(x,y) are Gaussian

random processes and O(x,y) has a mean of zero [5, p. 6-18].

In order to investigate the variance of X(x,y) and 6(x,y) con-

sider the structure function of a random process, A(x,y),

DA(x,y,x',y') - E f[A(x,y) - A(x',y')] 21 , (5)

199



where E f J denotes expected value. If A(x,y) is homogeneous, then

Eq. (5) reduces to

DA(Ax,ay) = E I[A(x,y) - A(x - Ax, y - ay)]21 . (6)

The statistical properties of X(x,y) and O(x,y) are usually stated

in terms of their structure functions, DX(ax,Ay) and D(Ax,AY)

(where it is assumed that the atmospheric turbulence is homogeneous).

These in turn can be related back to the structure function of the

refractive index of the atmosphere, n(x,y,z), which has random fluc-

tuations due mainly to random small-scale changes in temperature

[4, Sec. 8.4.2]. Work by Kolmogorov [6] showed that the structure

function for n(x,y,z) can be represented by
1/3

Dn (x,ay,Az) - c2 (&X2 + Ay2 + Az2) (7)

where C is called the structure constant of the refractive index

fluctuations and is a measure of the strength of those fluctuations
[4, Sec. 8.4.2]. From these models, one can calculate the wave

structure function, which is the sum of the structure functions for

X(x,y) and O(x,y), as [4, p. 453]

D(Ax,Ay) . Dx(ax,ay) + D 0 (Ax,ay) = 6.884 [ 0 j

(8)

where r0 is the atmospheric coherence diameter defined by Fried
~[7].

[7).We shall assume that variations in the amplitude of the distorted

wavefront are so small that they can be ignored, so that X(x,y) = 0

-. and D(Ax,hy) D (ax,ay). Equation (4) then becomes
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H(u,v) -P-'ffp(x~y) P*(x - Xfu, y - Xfv)

exp (1E0(x.Y) - O(x - Ifu, y - Xfv)]) dx dy (9)

where

P 0~ fi Ip(x,y)12 dx dy (10)

is a constant for each imaging system.

For a specific frequency location (u ovo ), the integration in

Eq. (9) can be approximated as the sum of a large number of complex

values. If we let H(u v)-R + iI, and let Var[R), Var[I], E[R]
0' 0

and ECI] be the variance of the real and imaginary parts and the

mean of the real and imaginary parts, respectively, of H(u 0,v0), then

the probability density function of IH(u 0,v0)I (assuming that
E[I) -0, which is shown below) is E8, p. 124)

P M(M) - 2w ffVarxpT2oV 2 - m2 VarLIJde

(11)

where m = JH(u 0,v 0) f. We actually need the density function of

t - IH(u 0,vo )12 which, using Eq. (11), is [9, p. 90]

Pt(t) - I e2i[ (Nrcos o - ECR 2 t sin2 a do.
4w~J]VifJ o 2 VarTUL -77a-rTT]

(12)

We will now generate expressions for the three parameters E[R],
Var[R) and Var[l) which are needed to evaluate Eq. (12) as well as
show that E[I) - 0.

From Eq. (9), assuming that P(x,y) is strictly real,

R - P-1ffP(r)P(r - a) cos [O(r) - (r - a)] dr (13)
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where r is the vector (x,y), a is the vector (xfuotxfv 0), and

dr - dxdy. Likewise,

I -P- IffP(r)P(r -a) sin [O(r) - O(r -A]dr. (14)

From Eq. (13)

E[R] - P-1ffP(r)P(r - )E $cos [O(r) - O(r - a)] I dr. (15)

As shown in Appendix A, for e a zero-mean Gaussian random variable

with variance a 2, E[cos o] - exp [-0.5a 2]. Thus Eq. (15) becomes

E[ 0 exp NO . I ~)ff P(r)P(r - a) dr (16)

where

.'f( 2 V ) /25/3

D(a) - D(xfu ,ffv 0 6.884 . (17)

Likewise, since E[sin o] - 0 for o zero-mean Gaussian (see Appendix A),

E[1) - 0. (18)

Also from Eq. (9),

R P 0 ffffP(r)P(r - a)P(r')P(r' - A) cos [O(r) - O(r - a)]

cos [O(r') - O(r' - a)) dr dr'
(19)

where r' is the vector (x',yl) and dr' - dx' dy'. From Eq. (19) we

have

E[R 2 3 -P2JJJJp(r)P(r - a)P(r')P(rl - a)

E $cos [O(r) - O(r -A]cos [6(r') 0 (r, -a))] dr dr'.

(20)
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The expectation in Eq. (20) can be rewritten as

E Icos [O(r) - O(r - a)) cos [O(r') - 0(r' - a]

1- E $cos [O(r - O(r - a) + O(r) - 0(r' -a)I

+-z Elcos [O(r) - O(r- A) - O(rl) + 0(r, al (21)

by using the trigometric identity cos A cos B - 1/2[cos(A + 8) +

cos(A - B)]. Each of the cosine arguments in Eq. (21) are zero mean

Gaussian random variables (recall that O(r) is zero mean). Thus, as

mentioned above, we can evaluate the expectations if we know the

variance of the cosine arguments. If we let 01 - O(r) - O(r -a) +

0(r') - 0(r' -a), then

Var[01] E [02] - [0(r) -O~ )2 + [0(r')- 0(r' A]

+ 2[0(r) - (r -a)][(r') - 0(r' - a](2

This can be rewritten as

Var[01) - E 1[0(r) - 0(r & )]2 1 + E 2[1)- (

+ E 1[i -0(r LIDYrr a) A - [O(r) - rl]

- [0(r - a) - (r' -a)) 2 + [O(r') - O(r -&)2

Using the definition of the wave structure function in Eq. (6), Eq.

(23) can be written as

Var[0 1 )mD(a) +D(a) +D(r -r' + A)-D(r -r')-D(r -r')

+ D(r' - r + A)

- 2[0(a) - D(r - r') + D(r -r' + a) + ~.D(r' - r + a)).

(24)
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The first expectation on the right hand side of Eq. (21) is thus

E $cos [O(r) - O(r - a) + 0(r') - 0(r' - a))

exp E-~)+D~r - r') Y D(r - r, + a) - D(r' - r + a)).

(25)

Similarly, the second expectation on the left hand side of Eq. (21)

can be evaluated as

E $cos [O(r) - O(r - a) - 0(r-) + 0(r' -a)I

=exp [-D(a) - D(r - r') + .1 D~r - + a) +- D(r' - r + a)).
2 2

(26)

Combining Eqs. (25) and (26) gives

E Icos [O(r) - O(r - a)) cos [O(r') 0 (r' - A))

Tep[-D(&)] (exp [D(r - r') -~D(r - r' + a) - D(r - r + a))

" exp [-0(r - r') + D(r - r, + a) + -7D(r - r + a))) (27)

Thus, Eq. (20) becomes

E[R 2  P-2p exp [-D(a)]fffP(r)P(r - )P(r')P(r' a)

(exp [D(r - r') -.D(r - r, a) -.D(r' - r +a))

" exp [-0(r - r') + 4-D(r - r- + a) + 4. Or' - r + &A)) dr d'

(28)

Note, however, that the wave structure functions in Eq. (28) depend

only on the difference r - r'. We can thus do a change of variable,
letting p - r - r' and q - r + r'. The Jacobian of the transforma-

tion is then 1/4, so Eq. (28) becomes
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E[R2) - 1. P-2 exp [-D(A)fL (pA)

(exp [D(p) - ~.D(p * a)- .7. D(-p + a))

+ exp [-0(p) +7Dp+A+y ( +a]d (29)

where L(p,A) is the overlap integral

L(p,A) qff (+.2 2a qil -p 2 i.. A) dq.
-ff P P z P' (30)

Combining Eqs. (29) and (16) gives

2 2
Var[R) - E[R )-(E[R])

1 P. -2 exp [-0(&)] ff(pA)

(exp [Dp DOp + a) D(-p + a))

+ exp [-0(p) + 7~ D(p + A) + y~ D(-p + A) - 2)dP. (31)

Following a similar argument, we have from Eq. (14),

1 2 . P2jJfffp(r)P(r - A)P(r')P(rl a)

sin [O(r) - O(r - a)) sln[O(r') 0 (r' - a)) dr dr'. (32)

Using the trigonometric identity:

sin[O(r) - O(r - A)] sin [O(r') - 0(r, a))

M -7 ( cos [0(r) - O(r -a) - 0(r') + 0(r' -A))

- Cs O~) Or 0r' 0r'- a))) (33)

and Eqs. (25) and (26) gives
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E[I 2) . P-2 exp [-D(A)flfP(r)P(r -A)P(r,)P(r - a)

exp [-D(r - r') + D(r - r' + a) + D(r' - r + a))

- exp [D(r - r') -. D(r - r' + A) D(r' - r + a)]d) dr '.

(34)

Using the same change of variable as before gives

E[ 2) .1 p;2 exp E-D(a)]ffL(P,a)

1 1 1
(exp [-0(p) + . D(p + a) + -7 D(-p + a))

- exp [D(p) -4.(p + a) -. D(-p + a)]))dp (35)

where L(p,a)) is defined in Eq. (30). Since E[I] - 0, we have that

Var[I] - E(12]. Note that the sum E[R 2] + E[l2] - E[IHI2I agrees

with the known results [4, Eq. (8.8-28)].

As mentioned above, we have assumed that P(x,y) is real. If in

addition we assume that P(x,y) is a circular disk (i.e., P(x,y) - 1

for (x2 + y2 ) 1 p2 and 0 elsewhere), then the overlap integral in

Eq. (30) as well as the integral in Eq. (16) become simply the area

in the intersection of the circles involved. Korff [10] has a series

of expressions for Eq. (30) depending on the orientation of the cir-

cles and thus also for Eq. (16) since it is just a degenerate case.

Under these assumptions, E[R] can be analytically calculated from

Eq. (16), and Var[R] and Var[I] can be calculated from a numeric in-

tegration of only the double integrals in Eqs (31) and (35). These

three values are the parameters we need to specify the density func-

tion of interest in Eq. (12). In addition, since from Eq. (8) the

structure function D(a) depends only upon the magnitude of a and not

on its angle, from Eq. (9 ) it is seen that the point statistics of

H depend only on the magnitude of a if the pupil function is circu-

larly symmetric. Consequently, for a circular pupil, Eqs. (16),
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(29) and (35) depend only on the magnitude of A, and so Eq. (12)

needs to be evaluated only along a line through the origin of the

frequency plane instead of throughout the whole plane. Figure 1

shows plots of E[R], E[R2] and El 2] calculated from Eqs. (16), (29)

and (35) respectively, versus distance from the frequency plane

origin for the case where the pupil function diameter was one-half

meter and ro = 0.2 m. Figure 2 shows the same plots for a diameter

of one meter and Figure 3 shows the same plots for a diameter of four

meters.

For some locations in the frequency plane, Eq. (12) can be sim-

plified. Assume that the vector a is large enough (i.e., that we

are far enough away from the origin in the frequency plane) so that

exp [ D(A)] << 1. (36)

Then, from Eq. (16), E[R] << 1. Also, if Eq. (36) is true, then for

reasonable values of the physical parameters (ro> 10 cm and tele-

scope aperture < 5 meters) we verified by numeric calculation that

exp [D(p) D(p + a) D(-p + A)]

exp 1_0(p) +, 1 D(p + a) 0l (-p + a(37)

for almost all values of p and A. Using Eqs. (29) and (35), Eq. (37)

implies that

E[R2 ] = E[I 2] 1 Po2ffL(p)(exp [-0(p) - 0()+ D(P + a)

+1D(-p +,)])dp.

(38)

Using E[R] = 0 and E[R 2] El 2] in Eq. (12) gives

Pt(t) = exp t (39)
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which is simply the exponential density. We can specify where such a

simplification is possibly by setting some small value, a, such that

Eq. (36) will be assumed to hold if

ep[- .-T N(O] <8. (40)

Using the definition of D(A) in Eq. (8), Eq. (40) can be rewritten as

'&M (Xfu) + (fv) > r (41)

which determines the cutoff frequency below which the simplification

of Eq. (39) no longer applies.
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3
MAXIMUM LIKELIHOOD ESTIMATOR

OF FOURIER INTENSITIES

Maximum likelihood estimators (MLE's) are well known and often

used in estimation problems [see, for example, 11, pp. 99-107; 9,

pp. 290-298; 12, pp. 65-72]. Much of their popularity comes from

the following two facts: (1) if the MLE is unbiased (i.e. the ex-

pected value of the MLE is equal to the value we are trying to esti-

mate) then the MIE most likely has the smallest variance of any un-

biased estimator [12, p. 68], and (2) as the number of observations

grows the MLE always asymptotically approaches a minimum variance,

unbiased estimator [9, p. 298; 12, p. 71]. MLE's can be described

as follows. Assume we have N observations of some random variable,

and we have the joint probability density function of our N observa-

tions as a function of a parameter, c, we are trying to estimate.

If the actual observed values are substituted into the variables

representing those observations in the joint density function, then

the density function becomes only a function of c. The value of c

which maximizes this one-dimensional function is the maximum likeli-

hood estimator of c for this specific set of observations. If we

can analytically differentiate the joint density function with re-

spect to c, then we can derive an explicit expression for the MLE by

setting this derivative to zero and solving for c. The resulting

expression, which will be a function of the N observations, will be

the MLE for c. If such a differentiation is not possible, but we

are able to generate the value of the joint density function given

the values of the N observations and given a value for c, an itera-

tive search can be implemented to find the value of c which, for a

given set of N observations, maximizes the joint density function.

This algorithm would then take as input the N observed values and

would output the MLE.
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In Section 2, the density function for the magnitude squared of

the optical transfer function at some specific location in the fre-

quency plane, IH(uo,vo)12 , was generated and expressions for the

parameters needed to evaluate the density function were derived. As

discussed in Section 1, the parameter we are interested in estimating

is the object's Fourier intensity, IO(Uovo)12 , and the data we ob-

serve is IGk(ovo) 2. If we let t - IHk(uovo) 2 (to be consis-

tent with Section 2), c - IO(u0,vo) 2 (to be consistent with the

previous paragraph) and s - IGk(uo,vo)1 2 , then from Eq. (2), i.e.

s = ct, we have [13, Ch 6]

Ps(s) Pt (42)

where P (s) is the probability density function of the observation,

s. The density function Pt is defined in Eq. (12), where the three

parameters needed to evaluate Eq. (12) (i.e., E[R], Vat[R], Var[I])

are described in Eqs. (16), (31) and (35) respectively. If we assume

that we have made N independent observations, then the joint density

function is just the product of the N individual density functions

[13, p. 167],

Ps(sl, s " " s )) pt ") ) ( . pt (")

(43)

The general expression resulting from substituting Eqs. (16),

(31) and (35) into Eq. (12), then substituting this result into

Eq. (43), is not easily differentiable, and so an explicit expression

for the ME of c - O(uo,vo) 2 is not easily generated. Under

the simplification of Eq. (36) however, Eq. (43) becomes the joint

density function of N independent, exponentially distributed random

numbers which is differentiable and generates the result

N

/ - [E I I H(uo,vo)I121] -1 1 12~u~v) (44)
k21
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where e'is the MLE of c - IO(u0,vo)1 2. This is simply the tradi-

tional Labeyrie method where, in practice, the expectaton in Eq. (44),

which is the transfer function of the speckle interferometry process,

is estimated by observing a point-like star under, hopefully, an

atmosphere having the same statistics as the atmosphere through which

the images of the object were collected. Note also that the expecta-

tion in Eq. (44) can be evaluated as the sum of Eqs. (29) and (35)

which simplifies to

E$IH(u01v o )121 = El R2 + 2

- E[2R2)

M I P-2ffL(p) exp -D(p) D(A) + 1 O(p + a)

* D(-p + a)] dp.

(45)

for a satisfying Eq. (41).

For locations in the frequency plane where the simplification of

Eq. (36) is not possible [i.e., locations closer to the origin than

the limit in Eq. (41)] the traditional method of estimation in

Eq. (44) is no longer a MLE. For these locations, an iterative pro-

cedure as described above would have to be implemented to generate a

MLE. Given the actual values of the N observations, sl . N ,

and given a value for the parameter, c, Eq. (12) can be used to eval-

uate Pt(si/c) for i - 1, . . ., N, and Eq. (43) can be used to eval-

uate the joint density function Ps(SI, . . sN). This allows an

iterative search procedure to find the value of c which maximizes

Eq. (43) whose output would thus be the maximum likelihood estimate

of IO(Uovo)12 given the observations. Note that this is a one-

dimensional search, so any of the one-dimensional algorithms can be used,

for example a Fibonacii or a golden section search [14, sec. 29.4].
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4
CONCLUSIONS

In this paper we have derived a procedure for generating the

maximum likelihood estimator of an object's Fourier intensity from

observations of the images that have been degraded by the atmosphere;

no noise effects were considered. It was shown that the traditional

averaging methods used in speckle interferometry generated a maximum

likelihood estimator only for higher spatial frequencies. For the

lower spatial frequencies, a procedure for generating the maximum

likelihood estimator was described which involves an iterative, one-

dimensional search for a maximum value where the function to be

searched was determined by the position in the frequency plane, the

parameters of the optical system used, and the atmospheric coherence

diameter. Whether a more efficient procedure exists for the lower

frequencies remains to be seen. In addition, the improvement in the

estimation error of this procedure over the traditional approach re-

mains to be evaluated.

2
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APPENDIX A

Let be a Gaussian random variable with zero mean and variance
2 *Then

E[cos 01 cos 0 exp -~jdo

f2 ~2

ccT~ cos (0) exp [ 0 d
[12

-7 exp

Si milar ly,

E~sin 6]- sin6 1 exp j-.dO

L 0

since the sine is an odd function.
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